994 resultados para Signal de transduction


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The caspase-3-generated RasGAP N-terminal fragment (fragment N) inhibits apoptosis in a Ras-PI3K-Akt-dependent manner. Fragment N protects various cell types, including insulin-secreting cells, against different types of stresses. Whether fragment N exerts a protective role during the development of type 1 diabetes is however not known. Non-obese diabetic (NOD) mice represent a well-known model for spontaneous development of type 1 diabetes that shares similarities with the diseases encountered in humans. To assess the role of fragment N in type 1 diabetes development, a transgene encoding fragment N under the control of the rat insulin promoter (RIP) was back-crossed into the NOD background creating the NOD-RIPN strain. Despite a mosaic expression of fragment N in the beta cell population of NOD-RIPN mice, islets isolated from these mice were more resistant to apoptosis than control NOD islets. Islet lymphocytic infiltration and occurrence of a mild increase in glycemia developed with the same kinetics in both strains. However, the period of time separating the mild increase in glycemia and overt diabetes was significantly longer in NOD-RIPN mice compared to the control NOD mice. There was also a significant decrease in the number of apoptotic beta cells in situ at 16 weeks of age in the NOD-RIPN mice. Fragment N exerts therefore a protective effect on beta cells within the pro-diabetogenic NOD background and this prevents a fast progression from mild to overt diabetes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: The proinflammatory cytokines interleukin 1beta (IL-1beta) and IL-18 are central players in the pathogenesis of inflammatory bowel disease (IBD). In response to a variety of microbial components and crystalline substances, both cytokines are processed via the caspase-1-activating multiprotein complex, the NLRP3 inflammasome. Here, the role of the NLRP3 inflammasome in experimental colitis induced by dextran sodium sulfate (DSS) was examined. METHODS: IL-1beta production in response to DSS was studied in macrophages of wild-type, caspase-1(-/-), NLRP3(-/-), ASC(-/-), cathepsin B(-/-) or cathepsin L(-/-) mice. Colitis was induced in C57BL/6 and NLRP3(-/-) mice by oral DSS administration. A clinical disease activity score was evaluated daily. Histological colitis severity and expression of cytokines were determined in colonic tissue. RESULTS: Macrophages incubated with DSS in vitro secreted high levels of IL-1beta in a caspase-1-dependent manner. IL-1beta secretion was abrogated in macrophages lacking NLRP3, ASC or caspase-1, indicating that DSS activates caspase-1 via the NLRP3 inflammasome. Moreover, IL-1beta secretion was dependent on phagocytosis, lysosomal maturation, cathepsin B and L, and reactive oxygen species (ROS). After oral administration of DSS, NLRP3(-/-) mice developed a less severe colitis than wild-type mice and produced lower levels of proinflammatory cytokines in colonic tissue. Pharmacological inhibition of caspase-1 with pralnacasan achieved a level of mucosal protection comparable with NLRP3 deficiency. CONCLUSIONS: The NLRP3 inflammasome was identified as a critical mechanism of intestinal inflammation in the DSS colitis model. The NLRP3 inflammasome may serve as a potential target for the development of novel therapeutics for patients with IBD.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The induction of proteinase inhibitor I synthesis in tomato (Lycopersicon esculentum) leaves in response to wounding is strongly inhibited by diethyldithiocarbamic acid (DIECA). DIECA also inhibits the induction of inhibitor I synthesis by the 18-amino acid polypeptide systemin, polygalacturonic acid (PCA), and linolenic acid, but not by jasmonic acid, suggesting that DIECA interferes with the octadecanoid signaling pathway. DIECA only weakly inhibited tomato lipoxygenase activity, indicating that DIECA action occurred at a step after the conversion of linolenic acid to 13(S)-hydroperoxylinolenic acid (HPOTrE). DIECA was shown to efficiently reduce HPOTrE to 13-hydroxylinolenic acid (HOTrE), which is not a signaling intermediate. Therefore, in vivo, DIECA is likely inhibiting the signaling pathway by shunting HPOTrE to HOTrE, thereby severely reducing the precursor pool leading to cyclization and eventual synthesis of jasmonic acid. Phenidone, an inhibitor of lipoxygenase, inhibited proteinase inhibitor I accumulation in response to wounding, further supporting a role for its substrate, linolenic acid, and its product, HPOTrE, as components of the signal-transduction pathway that induces proteinase inhibitor synthesis in response to wounding, systemin, and PCA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

SUMMARYThe innate immune system plays a central role in host defenses against invading pathogens. Innate immune cells sense the presence of pathogens through pattern recognition receptors that trigger intracellular signaling, leading to the production of pro-inflammatory mediators like cytokines, which shape innate and adaptive immune responses. Both by excess and by default inflammation may be detrimental to the host. Indeed, severe sepsis and septic shock are lethal complications of infections characterized by a dysregulated inflammatory response.In recent years, members of the superfamily of histone deacetylases have been the focus of great interest. In mammals, histone deacetylases are broadly classified into two main subfamilies comprising histone deacetylases 1-11 (HDAC1-11) and sirtuins 1-7 (SIRT1-7). These enzymes influence gene expression by deacetylating histones and numerous non-histone proteins. Histone deacetylases have been involved in the development of oncologic, metabolic, cardiovascular, neurodegenerative and autoimmune diseases. Pharmacological modulators of histone deacetylase activity, principally inhibitors, have been developed for the treatment of cancer and metabolic diseases. When we initiated this project, several studies suggested that inhibitors of HDAC 1-11 have anti-inflammatory activity. Yet, their influence on innate immune responses was largely uncharacterized. The present study was initiated to fill in this gap.In the first part of this work, we report the first comprehensive study of the effects of HDAC 1- 11 inhibitors on innate immune responses in vitro and in vivo. Strikingly, expression studies revealed that HDAC1-11 inhibitors act essentially as negative regulators of basal and microbial product- induced expression of critical immune receptors and antimicrobial products by mouse and human innate immune cells like macrophages and dendritic cells. Furthermore, we describe a new molecular mechanism whereby HDAC1-11 inhibitors repress pro-inflammatory cytokine expression through the induction of the expression and the activity of the transcriptional repressor Μί-2β. HDAC1-11 inhibitors also impair the potential of macrophages to engulf and kill bacteria. Finally, mice treated with an HDAC inhibitor are more susceptible to non-severe bacterial and fungal infection, but are protected against toxic and septic shock. Altogether these data support the concept that HDAC 1-11 inhibitors have potent anti-inflammatory and immunomodulatory activities in vitro and in vivo.Macrophage migration inhibitory factor (MIF) is a pro-inflammatory cytokine that plays a central role in innate immune responses, cell proliferation and oncogenesis. In the second part of this manuscript, we demonstrate that HDAC1-11 inhibitors inhibit MIF expression in vitro and in vivo and describe a novel molecular mechanism accounting for these effects. We propose that inhibition of MIF expression by HDAC 1-11 inhibitors may contribute to the antitumorigenic and anti-inflammatory effects of these drugs.NAD+ is an essential cofactor of sirtuins activity and one of the major sources of energy within the cells. Therefore, sirtuins link deacetylation to NAD+ metabolism and energy status. In the last part of this thesis, we report preliminary results indicating that a pharmacological inhibitor of SIRT1-2 drastically decreases pro-inflammatory cytokine production (RNA and protein) and interferes with MAP kinase intracellular signal transduction pathway in macrophages. Moreover, administration of the SIRT1-2 inhibitor protects mice from lethal endotoxic shock and septic shock.Overall, our studies demonstrate that inhibitors of HDAC1-11 and sirtuins are powerful anti-inflammatory molecules. Given their profound negative impact on the host antimicrobial defence response, these inhibitors might increase the susceptibility to opportunistic infections, especially in immunocompromised cancer patients. Yet, these inhibitors might be useful to control the inflammatory response in severely ill septic patients or in patients suffering from chronic inflammatory diseases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Similar to animal hormones, classic plant hormones are small organic molecules that regulate physiological and developmental processes. In development, this often involves the regulation of growth through the control of cell size or division. The plant hormones auxin and brassinosteroid modulate both cell expansion and proliferation and are known for their overlapping activities in physiological assays. Recent molecular genetic analyses in the model plant Arabidopsis suggest that this reflects interdependent and often synergistic action of the two hormone pathways. Such pathway interactions probably occur through the combinatorial regulation of common target genes by auxin- and brassinosteroid-controlled transcription factors. Moreover, auxin and brassinosteroid signaling and biosynthesis and auxin transport might be linked by an emerging upstream connection involving calcium-calmodulin and phosphoinositide signaling.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The lymphatic vascular system, the body's second vascular system present in vertebrates, has emerged in recent years as a crucial player in normal and pathological processes. It participates in the maintenance of normal tissue fluid balance, the immune functions of cellular and antigen trafficking and absorption of fatty acids and lipid-soluble vitamins in the gut. Recent scientific discoveries have highlighted the role of lymphatic system in a number of pathologic conditions, including lymphedema, inflammatory diseases, and tumor metastasis. Development of genetically modified animal models, identification of lymphatic endothelial specific markers and regulators coupled with technological advances such as high-resolution imaging and genome-wide approaches have been instrumental in understanding the major steps controlling growth and remodeling of lymphatic vessels. This review highlights the recent insights and developments in the field of lymphatic vascular biology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

SUMMARY : Two-component systems are key mediators implicated in the response of numerous bacteria to a wide range of signals and stimuli. The two-component system comprised of the sensor kinase GacS and the response regulator GacA is broadly distributed among γ-proteobacteria bacteria and fulfils diverse functions such as regulation of carbon storage and expression of virulence. In Pseudomonas fluorescens, a soil bacterium which protects plants from root-pathogenic fungi and nematodes, the GacS/GacA two-component system has been shown to be essential for the production of secondary metabolites and exoenzymes required for the biocontrol activity of the bacterium. The regulatory cascade initiated by GacS/GacA consists of two translational repressor proteins, RsmA and RsmE, as well as three GacAcontrolled small regulatory RNAs RsmX, RsmY and RsmZ, which titrate RsmA and RsmE to allow the expression of biocontrol factors. Genetic analysis revealed that two additional sensor kinases termed RetS and Lads were involved as negative and positive control elements, respectively, in the Gac/Rsm pathway in P. fluoresens CHAO. Furthermore, it could be proposed that RetS and Lads interact with GacS, thereby modulating the expression of antibiotic compounds and hydrogen cyanide, as well as the rpoS gene encoding the stress and stationary phase sigma factor σ. Temperature was found to be an important environmental cue that influences the Gac/Rsm network. Indeed, the production of antibiotic compounds and hydrogen cyanide was reduced at 35°C, by comparison with the production at 30°C. RetS was identified to be involved in this temperature control. The small RNA RsmY was confirmed to be positively regulated by GacA and RsmA/RsmE. Two essential regions were identified in the rsmY promoter by mutational analysis, the upstream activating sequence (UAS) and the linker sequence. Although direct experimental evidence is still missing, several observations suggest that GacA may bind to the UAS, whereas the linker region would be recognized by intermediate RsmA/RsmEdependent repressors and/or activators. In conclusion, this work has revealed new elements contributing to the function of the signal transduction mechanisms in the Gac/Rsm pathway. RESUME : Les systèmes ä deux composants sont des mécanismes d'une importance notoire que beaucoup de bactéries utilisent pour faire face et répondre aux stimuli environnementaux. Le système à deux composants comprenant le senseur GacS et le régulateur de réponse GacA est très répandu chez les γ-protéobactéries et remplit des fonctions aussi diverses que la régulation du stockage de carbone ou l'expression de la virulence. Chez Pseudomonas fluorescens CHAO, une bactérie du sol qui protège les racines des plantes contre des attaques de champignons et nématodes pathogènes, le système à deux composants GacS/GacA est essentiel à la production de métabolites secondaires et d'exoenzymes requis pour l'activité de biocontrôle de la bactérie. La cascade régulatrice initiée pas GacS/GacA fait intervenir deux protéines répresseur de traduction, RsmA et RsmE, ainsi que trois petits ARNs RsmX, RsmY et RsmZ, dont la production est contrôlée par GacA. Ces petits ARNs ont pour rôle de contrecarrer l'action des protéines répressseur de la traduction, ce qui permet l'expression de facteurs de biocontrôle. Des analyses génétiques ont révélé la présence de deux senseurs supplémentaires, appelés Rets et Lads, qui interviennent dans la cascade Gac/Rsm de P. fluorescens. L'impact de ces senseurs est, respectivement, négatif et positif. Ces interactions ont apparenunent lieu au niveau de GacS et permettent une modulation de l'expression des antibiotiques et de l'acide cyanhydrique, ainsi que du gène rpoS codant pour le facteur sigma du stress. La température s'est révélée être un facteur environnemental important qui influence la cascade Gac/Rsm. Il s'avère en effet que la production d'antibiotiques ainsi que d'acide cyanhydrique est moins importante à 35°C qu'à 30°C. L'implication du senseur Rets dans ce contrôle par la température a pu être démontrée. La régulation positive du petit ARN RsmY par GacA et RsmA/RsmE a pu être confirmée; par le biais d'une analyse mutationelle, deux régions essentielles ont pu être mises en évidence dans la région promotrice de rsmY. Malgré le manque de preuves expérimentales directes, certains indices suggèrent que GacA puisse directement se fixer sur une des deux régions (appelée UAS), tandis que la deuxième région (appelée linker) serait plutôt reconnue par des facteurs intermédiaires (activateurs ou répresseurs) dépendant de RsmA/RsmE. En conclusion, ce travail a dévoilé de nouveaux éléments permettant d'éclairer les mécanismes de transduction des signaux dans la cascade Gac/Rsm.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the pathogenesis of type I diabetes mellitus, activated leukocytes infiltrate pancreatic islets and induce beta cell dysfunction and destruction. Interferon (IFN)-gamma, tumor necrosis factor-alpha and interleukin (IL)-1 beta play important, although not completely defined, roles in these mechanisms. Here, using the highly differentiated beta Tc-Tet insulin-secreting cell line, we showed that IFN-gamma dose- and time-dependently suppressed insulin synthesis and glucose-stimulated secretion. As described previously IFN-gamma, in combination with IL-1 beta, also induces inducible NO synthase expression and apoptosis (Dupraz, P., Cottet, S., Hamburger, F., Dolci, W., Felley-Bosco, E., and Thorens, B. (2000) J. Biol. Chem. 275, 37672--37678). To assess the role of the Janus kinase/signal transducer and activator of transcription (STAT) pathway in IFN-gamma intracellular signaling, we stably overexpressed SOCS-1 (suppressor of cytokine signaling-1) in the beta cell line. We demonstrated that SOCS-1 suppressed cytokine-induced STAT-1 phosphorylation and increased cellular accumulation. This was accompanied by a suppression of the effect of IFN-gamma on: (i) reduction in insulin promoter-luciferase reporter gene transcription, (ii) decrease in insulin mRNA and peptide content, and (iii) suppression of glucose-stimulated insulin secretion. Furthermore, SOCS-1 also suppressed the cellular effects that require the combined presence of IL-1 beta and IFN-gamma: induction of nitric oxide production and apoptosis. Together our data demonstrate that IFN-gamma is responsible for the cytokine-induced defect in insulin gene expression and secretion and that this effect can be completely blocked by constitutive inhibition of the Janus kinase/STAT pathway.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two receptors for TRAIL, designated TRAIL-R2 and TRAIL-R3, have been identified. Both are members of the tumor necrosis factor receptor family. TRAIL-R2 is structurally similar to the death-domain-containing receptor TRAIL-R1 (DR-4), and is capable of inducing apoptosis. In contrast, TRAIL-R3 does not promote cell death. TRAIL-R3 is highly glycosylated and is membrane bound via a putative phosphatidylinositol anchor. The extended structure of TRAIL-R3 is due to the presence of multiple threonine-, alanine-, proline- and glutamine-rich repeats (TAPE repeats). TRAIL-R2 shows a broad tissue distribution, whereas the expression of TRAIL-R3 is restricted to peripheral blood lymphocytes (PBLs) and skeletal muscle. All three TRAIL receptors bind TRAIL with similar affinity, suggesting a complex regulation of TRAIL-mediated signals.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE OF REVIEW: The purpose of this review was to summarize available data on uveal melanoma biology and treatment in order to provide the medical community with a basic reference that would help to make further progress in this rare disease, which remains difficult to treat.¦RECENT FINDINGS: The most relevant recent findings driving current clinical developments are in the elucidation of uveal melanoma genetics and genomics. The key driving mutations - that differ completely from cutaneous melanoma - have been identified. Based on the novel insights into key signaling pathways, the first clinical trials with targeted treatments have been implemented. However, systemic and regional chemotherapy approaches as well as other regional treatment modalities for liver metastases are also a major part of the current treatment armamentarium and are prospectively being evaluated.¦SUMMARY: In summary, the recent biological findings and the creation of a series of clinical trials underscore how the international community is able to perform relevant advances in an extremely rare disease.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent evidence suggests the existence of a hepatoportal vein glucose sensor, whose activation leads to enhanced glucose use in skeletal muscle, heart, and brown adipose tissue. The mechanism leading to this increase in whole body glucose clearance is not known, but previous data suggest that it is insulin independent. Here, we sought to further determine the portal sensor signaling pathway by selectively evaluating its dependence on muscle GLUT4, insulin receptor, and the evolutionarily conserved sensor of metabolic stress, AMP-activated protein kinase (AMPK). We demonstrate that the increase in muscle glucose use was suppressed in mice lacking the expression of GLUT4 in the organ muscle. In contrast, glucose use was stimulated normally in mice with muscle-specific inactivation of the insulin receptor gene, confirming independence from insulin-signaling pathways. Most importantly, the muscle glucose use in response to activation of the hepatoportal vein glucose sensor was completely dependent on the activity of AMPK, because enhanced hexose disposal was prevented by expression of a dominant negative AMPK in muscle. These data demonstrate that the portal sensor induces glucose use and development of hypoglycemia independently of insulin action, but by a mechanism that requires activation of the AMPK and the presence of GLUT4.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Time-expanded echolocation calls were recorded from 29 species of Neotropical bats in lowland moist tropical forest in Trinidad, West Indies with three aims (I) to describe the echolocation calls of the members of a diverse Neotropical bat community, especially members of the family Phyllostomidae, whose calls are not well documented (2) to investigate whether multivariate analysis of calls allows species and foraging guilds to be identified and (3) to evaluate the use of bat detectors in surveying the phyllostomids of Neotropical forests. The calls of 12 species of the family Phyllostomidae are described here for the first time and a total of 29 species, belonging to five families (Emballonuridae, Mormoopidae, Phyllostomidae, Molossidae and Vespertilionidae) were recorded Quadratic discriminant function analysis (DFA) was used to obtain classification rates for each one of 11 individual species and for six guilds (based on diet, foraging mode and habitat) comprising 26 species Overall classification rates were low compared to similar studies conducted in the Palaeotropics We suggest that this may be due to a combination of ecological plasticity for certain species and a loose relationship between echolocation call shape, fine-grained resource partitioning and resource acquisition in phyllostomids

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE OF REVIEW: The control of glucose and energy homeostasis, including feeding behaviour, is tightly regulated by gut-derived peptidic and nonpeptidic endocrine mediators, autonomic nervous signals, as well as nutrients such as glucose. We will review recent findings on the role of the gastrointestinal tract innervation and of portal vein glucose sensors; we will review selected data on the action of gastrointestinally released hormones. RECENT FINDINGS: The involvement of mechanosensory vagal afferents in postprandial meal termination has been clarified using mouse models with selective impairments of genes required for development of mechanosensory fibres. These activate central glucogen-like peptide-1/glucogen-like peptide-2 containing ascending pathways linking the visceroceptive brainstem neurons to hypothalamic nuclei. Mucosal terminals comprise the chemosensory vagal afferents responsive to postprandially released gastrointestinal hormones. The mechanism by which the hepatoportal glucose sensor stimulates glucose utilization by muscles was demonstrated, using genetically modified mice, to be insulin-independent but to require GLUT4 and AMP-kinase. This sensor is a key site of glucogen-like peptide-1 action and plays a critical role in triggering first phase insulin secretion. PeptideYY and ghrelin target intracerebral receptors as they are bidirectionally transported across the blood brain barrier. The anorectic functions of peripherally released peptideYY may however be mediated both via vagal afferents and intracerebral Y2 receptors in the brainstem and arcuate nucleus. SUMMARY: These recent findings demonstrate that the use of improved anatomical and physiological techniques and animal models with targeted gene modifications lead to an improved understanding of the complex role of gastrointestinal signals in the control of energy homeostasis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

During the last several years, the mechanism of IFN gamma-dependent signal transduction has been the focus of intense investigation. This research has recently culminated in the elucidation of a comprehensive molecular understanding of the events that underlie IFN gamma-induced cellular responses. The structure and function of the IFN gamma receptor have been defined. The mechanism of IFN gamma signal transduction has been largely elucidated, and the physiologic relevance of this process validated. Most recently, the molecular events that link receptor ligation to signal transduction have been established. Together these insights have produced a model of IFN gamma signaling that is nearly complete and that serves as a paradigm for signaling by other members of the cytokine receptor superfamily.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An inflammasome is a multiprotein complex that serves as a platform for caspase-1 activation and caspase-1-dependent proteolytic maturation and secretion of interleukin-1β (IL-1β). Though a number of inflammasomes have been described, the NLRP3 inflammasome is the most extensively studied but also the most elusive. It is unique in that it responds to numerous physically and chemically diverse stimuli. The potent proinflammatory and pyrogenic activities of IL-1β necessitate that inflammasome activity is tightly controlled. To this end, a priming step is first required to induce the expression of both NLRP3 and proIL-1β. This event renders the cell competent for NLRP3 inflammasome activation and IL-1β secretion, and it is highly regulated by negative feedback loops. Despite the wide array of NLRP3 activators, the actual triggering of NLRP3 is controlled by integration a comparatively small number of signals that are common to nearly all activators. Minimally, these include potassium efflux, elevated levels of reactive oxygen species (ROS), and, for certain activators, lysosomal destabilization. Further investigation of how these and potentially other as yet uncharacterized signals are integrated by the NLRP3 inflammasome and the relevance of these biochemical events in vivo should provide new insight into the mechanisms of host defense and autoinflammatory conditions.