786 resultados para Science teaching methods


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Some superlinear fourth order elliptic equations are considered. A family of solutions is proved to exist and to concentrate at a point in the limit. The proof relies on variational methods and makes use of a weak version of the Ambrosetti-Rabinowitz condition. The existence and concentration of solutions are related to a suitable truncated equation. (C) 2012 Elsevier Inc. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In the past decades, all of the efforts at quantifying systems complexity with a general tool has usually relied on using Shannon's classical information framework to address the disorder of the system through the Boltzmann-Gibbs-Shannon entropy, or one of its extensions. However, in recent years, there were some attempts to tackle the quantification of algorithmic complexities in quantum systems based on the Kolmogorov algorithmic complexity, obtaining some discrepant results against the classical approach. Therefore, an approach to the complexity measure is proposed here, using the quantum information formalism, taking advantage of the generality of the classical-based complexities, and being capable of expressing these systems' complexity on other framework than its algorithmic counterparts. To do so, the Shiner-Davison-Landsberg (SDL) complexity framework is considered jointly with linear entropy for the density operators representing the analyzed systems formalism along with the tangle for the entanglement measure. The proposed measure is then applied in a family of maximally entangled mixed state.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this work, we present an implementation of quantum logic gates and algorithms in a three effective qubits system, represented by a (I = 7/2) NMR quadrupolar nuclei. To implement these protocols we have used the strong modulating pulses (SMP) and the various stages of each implementation were verified by quantum state tomography (QST). The results for the computational base states, Toffolli logic gates, and Deutsch-Jozsa and Grover algorithms are presented here. Also, we discuss the difficulties and advantages of implementing such protocols using the SMP technique in quadrupolar systems.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The ability to transmit and amplify weak signals is fundamental to signal processing of artificial devices in engineering. Using a multilayer feedforward network of coupled double-well oscillators as well as Fitzhugh-Nagumo oscillators, we here investigate the conditions under which a weak signal received by the first layer can be transmitted through the network with or without amplitude attenuation. We find that the coupling strength and the nodes' states of the first layer act as two-state switches, which determine whether the transmission is significantly enhanced or exponentially decreased. We hope this finding is useful for designing artificial signal amplifiers.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Breakthrough advances in microprocessor technology and efficient power management have altered the course of development of processors with the emergence of multi-core processor technology, in order to bring higher level of processing. The utilization of many-core technology has boosted computing power provided by cluster of workstations or SMPs, providing large computational power at an affordable cost using solely commodity components. Different implementations of message-passing libraries and system softwares (including Operating Systems) are installed in such cluster and multi-cluster computing systems. In order to guarantee correct execution of message-passing parallel applications in a computing environment other than that originally the parallel application was developed, review of the application code is needed. In this paper, a hybrid communication interfacing strategy is proposed, to execute a parallel application in a group of computing nodes belonging to different clusters or multi-clusters (computing systems may be running different operating systems and MPI implementations), interconnected with public or private IP addresses, and responding interchangeably to user execution requests. Experimental results demonstrate the feasibility of this proposed strategy and its effectiveness, through the execution of benchmarking parallel applications.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Traditional supervised data classification considers only physical features (e. g., distance or similarity) of the input data. Here, this type of learning is called low level classification. On the other hand, the human (animal) brain performs both low and high orders of learning and it has facility in identifying patterns according to the semantic meaning of the input data. Data classification that considers not only physical attributes but also the pattern formation is, here, referred to as high level classification. In this paper, we propose a hybrid classification technique that combines both types of learning. The low level term can be implemented by any classification technique, while the high level term is realized by the extraction of features of the underlying network constructed from the input data. Thus, the former classifies the test instances by their physical features or class topologies, while the latter measures the compliance of the test instances to the pattern formation of the data. Our study shows that the proposed technique not only can realize classification according to the pattern formation, but also is able to improve the performance of traditional classification techniques. Furthermore, as the class configuration's complexity increases, such as the mixture among different classes, a larger portion of the high level term is required to get correct classification. This feature confirms that the high level classification has a special importance in complex situations of classification. Finally, we show how the proposed technique can be employed in a real-world application, where it is capable of identifying variations and distortions of handwritten digit images. As a result, it supplies an improvement in the overall pattern recognition rate.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A análise detalhada de Mapas Conceituais (MCs) pode revelar informações latentes que não são percebidas a partir da mera leitura do seu conjunto de proposições. O presente trabalho tem como objetivo propor a Análise de Vizinhança (AViz) como uma forma inovadora de avaliar os MCs obtidos em sala de aula. A seleção de um Conceito Obrigatório (CO) permite ao professor verificar como os alunos o relacionam com outros conceitos, os quais são classificados como Conceitos Vizinhos (CVs). As proposições estabelecidas entre o CO e os CVs são suficientes para indicar o nível de compreensão do aluno sobre o tema mapeado. MCs (n = 69) sobre mudanças climáticas formam o primeiro conjunto de dados empíricos que ratifica o potencial da AViz. O CO selecionado foi dispersão, a fim de avaliar se os alunos conseguem relacionar esse fenômeno físico com o caráter global desse problema ambiental. Os padrães identificados a partir da AViz sugerem que, apesar de serem submetidos a uma mesma sequência didática, nem todos os alunos conseguiram utilizar o CO de forma adequada. Isso pode ser explicado a partir da Teoria da Aprendizagem Significativa de David Ausubel, que destaca o papel fundamental dos conhecimentos prévios no processo de assimilação de novas informações.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We propose simple heuristics for the assembly line worker assignment and balancing problem. This problem typically occurs in assembly lines in sheltered work centers for the disabled. Different from the well-known simple assembly line balancing problem, the task execution times vary according to the assigned worker. We develop a constructive heuristic framework based on task and worker priority rules defining the order in which the tasks and workers should be assigned to the workstations. We present a number of such rules and compare their performance across three possible uses: as a stand-alone method, as an initial solution generator for meta-heuristics, and as a decoder for a hybrid genetic algorithm. Our results show that the heuristics are fast, they obtain good results as a stand-alone method and are efficient when used as a initial solution generator or as a solution decoder within more elaborate approaches.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Competitive learning is an important machine learning approach which is widely employed in artificial neural networks. In this paper, we present a rigorous definition of a new type of competitive learning scheme realized on large-scale networks. The model consists of several particles walking within the network and competing with each other to occupy as many nodes as possible, while attempting to reject intruder particles. The particle's walking rule is composed of a stochastic combination of random and preferential movements. The model has been applied to solve community detection and data clustering problems. Computer simulations reveal that the proposed technique presents high precision of community and cluster detections, as well as low computational complexity. Moreover, we have developed an efficient method for estimating the most likely number of clusters by using an evaluator index that monitors the information generated by the competition process itself. We hope this paper will provide an alternative way to the study of competitive learning.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Semisupervised learning is a machine learning approach that is able to employ both labeled and unlabeled samples in the training process. In this paper, we propose a semisupervised data classification model based on a combined random-preferential walk of particles in a network (graph) constructed from the input dataset. The particles of the same class cooperate among themselves, while the particles of different classes compete with each other to propagate class labels to the whole network. A rigorous model definition is provided via a nonlinear stochastic dynamical system and a mathematical analysis of its behavior is carried out. A numerical validation presented in this paper confirms the theoretical predictions. An interesting feature brought by the competitive-cooperative mechanism is that the proposed model can achieve good classification rates while exhibiting low computational complexity order in comparison to other network-based semisupervised algorithms. Computer simulations conducted on synthetic and real-world datasets reveal the effectiveness of the model.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this paper we discuss the problem of how to discriminate moments of interest on videos or live broadcast shows. The primary contribution is a system which allows users to personalize their programs with previously created media stickers-pieces of content that may be temporarily attached to the original video. We present the system's architecture and implementation, which offer users operators to transparently annotate videos while watching them. We offered a soccer fan the opportunity to add stickers to the video while watching a live match: the user reported both enjoying and being comfortable using the stickers during the match-relevant results even though the experience was not fully representative.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We present a generalized test case generation method, called the G method. Although inspired by the W method, the G method, in contrast, allows for test case suite generation even in the absence of characterization sets for the specification models. Instead, the G method relies on knowledge about the index of certain equivalences induced at the implementation models. We show that the W method can be derived from the G method as a particular case. Moreover, we discuss some naturally occurring infinite classes of FSM models over which the G method generates test suites that are exponentially more compact than those produced by the W method.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Current scientific applications have been producing large amounts of data. The processing, handling and analysis of such data require large-scale computing infrastructures such as clusters and grids. In this area, studies aim at improving the performance of data-intensive applications by optimizing data accesses. In order to achieve this goal, distributed storage systems have been considering techniques of data replication, migration, distribution, and access parallelism. However, the main drawback of those studies is that they do not take into account application behavior to perform data access optimization. This limitation motivated this paper which applies strategies to support the online prediction of application behavior in order to optimize data access operations on distributed systems, without requiring any information on past executions. In order to accomplish such a goal, this approach organizes application behaviors as time series and, then, analyzes and classifies those series according to their properties. By knowing properties, the approach selects modeling techniques to represent series and perform predictions, which are, later on, used to optimize data access operations. This new approach was implemented and evaluated using the OptorSim simulator, sponsored by the LHC-CERN project and widely employed by the scientific community. Experiments confirm this new approach reduces application execution time in about 50 percent, specially when handling large amounts of data.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Field-Programmable Gate Arrays (FPGAs) are becoming increasingly important in embedded and high-performance computing systems. They allow performance levels close to the ones obtained with Application-Specific Integrated Circuits, while still keeping design and implementation flexibility. However, to efficiently program FPGAs, one needs the expertise of hardware developers in order to master hardware description languages (HDLs) such as VHDL or Verilog. Attempts to furnish a high-level compilation flow (e.g., from C programs) still have to address open issues before broader efficient results can be obtained. Bearing in mind an FPGA available resources, it has been developed LALP (Language for Aggressive Loop Pipelining), a novel language to program FPGA-based accelerators, and its compilation framework, including mapping capabilities. The main ideas behind LALP are to provide a higher abstraction level than HDLs, to exploit the intrinsic parallelism of hardware resources, and to allow the programmer to control execution stages whenever the compiler techniques are unable to generate efficient implementations. Those features are particularly useful to implement loop pipelining, a well regarded technique used to accelerate computations in several application domains. This paper describes LALP, and shows how it can be used to achieve high-performance computing solutions.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

O objetivo desse trabalho consiste em investigar as mudanças subjetivas de um estudante durante a realização de uma Oficina de Ciências e articulá-las, por um lado, com os discursos da professora e, por outro, com a dinâmica de funcionamento grupal. Os dados foram coletados numa escola pública do município de Londrina/PR. No total foram realizados quinze encontros, e o instrumento de coleta de dados consistiu na gravação em vídeo. O grupo selecionado para a pesquisa constituiu-se de quatro alunos do II Ciclo (3ª e 4ª séries) do Ensino Fundamental. O referencial teórico utilizado para análise e interpretação dos dados encontra sua base em conceitos psicanalíticos de orientação lacaniana e da dinâmica de grupos. Concluímos considerando alguns aspectos que podem contribuir para a promoção e sustentação da aprendizagem em grupo em situações de ensino, sinalizando para o papel das intervenções do professor no sentido de promover um trabalho colaborativo.