891 resultados para Rotational motion
Resumo:
The tapping mode is one of the mostly employed techniques in atomic force microscopy due to its accurate imaging quality for a wide variety of surfaces. However, chaotic microcantilever motion impairs the obtention of accurate images from the sample surfaces. In order to investigate the problem the tapping mode atomic force microscope is modeled and chaotic motion is identified for a wide range of the parameter's values. Additionally, attempting to prevent the chaotic motion, two control techniques are implemented: the optimal linear feedback control and the time-delayed feedback control. The simulation results show the feasibility of the techniques for chaos control in the atomic force microscopy. © 2012 IMechE.
Resumo:
We consider the non-Markovian Langevin evolution of a dissipative dynamical system in quantum mechanics in the path integral formalism. After discussing the role of the frequency cutoff for the interaction of the system with the heat bath and the kernel and noise correlator that follow from the most common choices, we derive an analytic expansion for the exact non-Markovian dissipation kernel and the corresponding colored noise in the general case that is consistent with the fluctuation-dissipation theorem and incorporates systematically non-local corrections. We illustrate the modifications to results obtained using the traditional (Markovian) Langevin approach in the case of the exponential kernel and analyze the case of the non-Markovian Brownian motion. We present detailed results for the free and the quadratic cases, which can be compared to exact solutions to test the convergence of the method, and discuss potentials of a general nonlinear form. © 2013 Elsevier B.V. All rights reserved.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
We analyze the scalar radiation emitted by a source in uniform circular motion in Minkowski spacetime interacting with a massive Klein-Gordon field. We assume the source rotating around a central object due to a Newtonian force. By considering the canonical quantization of this field, we use perturbation theory to compute the radiation emitted at the tree level. Regarding the initial state of the field as being the Minkowski vacuum, we compute the emission amplitude for the rotating source, assuming it as being minimally coupled to the massive Klein-Gordon field. We then compute the power emitted by the swirling source as a function of its angular velocity, as measured by asymptotic static observers.
Resumo:
OBJECTIVE: This study assessed the anterior-posterior positioning of the upper and lower first molars, and the degree of rotation of the upper first molars in individuals with Class II, division 1, malocclusion. METHODS: Asymmetry I, an accurate device, was used to assess sixty sets of dental casts from 27 females and 33 males, aged between 12 and 21 years old, with bilateral Class II, division 1. The sagittal position of the molars was determined by positioning the casts onto the device, considering the midpalatal suture as a symmetry reference, and then measuring the distance between the mesial marginal ridge of the most distal molar and the mesial marginal ridge of its counterpart. With regard to the degree of rotation of the upper molar, the distance between landmarks on the mesial marginal ridge was measured. Chi-square test with a 5% significance level was used to verify the variation in molars position. Student's t test at 5% significance was used for statistical analysis. RESULTS: A great number of lower molars mesially positioned was registered, and the comparison between the right and left sides also demonstrated a higher number of mesially positioned molars on the right side of both arches. The average rotation of the molars was found to be 0.76 mm and 0.93 mm for the right and left sides, respectively. CONCLUSION: No statistically significant difference was detected between the mean values of molars mesialization regardless of the side and arch. Molars rotation, measured in millimeters, represented ¼ of Class II.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Background: Although the effect of symptomatic back pain on functional movement has been investigated, changes to spinal movement patterns in essentially pain-free people with a history of recurrent back pain are largely unreported. Reaching activities, important for everyday and occupational function, often present problems to such people, but have not been considered in this population. The purpose of this study was to compare the amplitude and timing of spinal and hip motions during two, seated reaching activities in people with and without a history of recurrent low back pain (RLBP).Methods: Spinal and hip motions during reaching downward and across the body, in both directions, were tracked using electromagnetic sensors. Analyses were conducted to explore the amplitudes, velocities and timings of 3D segmental movements and to compare controls with subjects with recurrent, but asymptomatic lumbar or lumbosacral pain.Findings: We detected significant differences in the amplitude and timing of movement in the lower thoracic region, with the RLBP group restricting movement and demonstrating compensatory increased motion at the hip. The lumbar region displayed no significant between-group differences. The order in which the spinal segments achieved peak velocity in cross-reaching was reversed in RLBP compared to controls, with lumbar motion leading in controls and lagging in RLBP.Interpretation: Subjects with a history of RLBP show a number of altered kinematic features during reaching activities which are not related to the presence or intensity of pain, but which suggest adaptive changes to movement control. (C) 2013 Elsevier Ltd. All rights reserved.
Resumo:
Pós-graduação em Cirurgia Veterinária - FCAV
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
A mapping scheme is presented which takes quantum operators associated to bosonic degrees of freedom into complex phase space integral kernel representatives. The procedure consists of using the Schrödinger squeezed state as the starting point for the construction of the integral mapping kernel which, due to its inherent structure, is suited for the description of second quantized operators. Products and commutators of operators have their representatives explicitly written which reveal new details when compared to the usual q-p phase space description. The classical limit of the equations of motion for the canonical pair q-p is discussed in connection with the effect of squeezing the quantum phase space cellular structure. © 1993.
Resumo:
Most work on supersingular potentials has focused on the study of the ground state. In this paper, a global analysis of the ground and excited states for the successive values of the orbital angular momentum of the supersingular plus quadratic potential is carried out, making use of centrifugal plus quadratic potential eigenfunction bases. First, the radially nodeless states are variationally analyzed for each value of the orbital angular momentum using the corresponding functions of the bases; the output includes the centrifugal and frequency parameters of the auxiliary potentials and their eigenfunction bases. In the second stage, these bases are used to construct the matrix representation of the Hamiltonian of the system, and from its diagonalization the energy eigenvalues and eigenvectors of the successive states are obtained. The systematics of the accuracy and convergence of the overall results are discussed with emphasis on the dependence on the intensity of the supersingular part of the potential and on the orbital angular momentum.
Resumo:
We have used Fourier Transform spectral data on the C-O stretching mode of (CD3OD)-C-13 in order to perform a vibro-rotational analysis for this molecule. We have estimated a few molecular parameters of the ground and C-O stretching vibrational modes. Based on these parameters, and by using the Kwan-Dennison model, we propose assignments for a number of far-infrared laser transitions of (CD3OD)-C-13.