955 resultados para Rilevamento pedoni, Pattern recognition, Descrittori di tessitura, Classificatori


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents an algorithm for mining unordered embedded subtrees using the balanced-optimal-search canonical form (BOCF). A tree structure guided scheme based enumeration approach is defined using BOCF for systematically enumerating the valid subtrees only. Based on this canonical form and enumeration technique, the balanced optimal search embedded subtree mining algorithm (BEST) is introduced for mining embedded subtrees from a database of labelled rooted unordered trees. The extensive experiments on both synthetic and real datasets demonstrate the efficiency of BEST over the two state-of-the-art algorithms for mining embedded unordered subtrees, SLEUTH and U3.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Identifying product families has been considered as an effective way to accommodate the increasing product varieties across the diverse market niches. In this paper, we propose a novel framework to identifying product families by using a similarity measure for a common product design data BOM (Bill of Materials) based on data mining techniques such as frequent mining and clus-tering. For calculating the similarity between BOMs, a novel Extended Augmented Adjacency Matrix (EAAM) representation is introduced that consists of information not only of the content and topology but also of the fre-quent structural dependency among the various parts of a product design. These EAAM representations of BOMs are compared to calculate the similarity between products and used as a clustering input to group the product fami-lies. When applied on a real-life manufacturing data, the proposed framework outperforms a current baseline that uses orthogonal Procrustes for grouping product families.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Interpolation techniques for spatial data have been applied frequently in various fields of geosciences. Although most conventional interpolation methods assume that it is sufficient to use first- and second-order statistics to characterize random fields, researchers have now realized that these methods cannot always provide reliable interpolation results, since geological and environmental phenomena tend to be very complex, presenting non-Gaussian distribution and/or non-linear inter-variable relationship. This paper proposes a new approach to the interpolation of spatial data, which can be applied with great flexibility. Suitable cross-variable higher-order spatial statistics are developed to measure the spatial relationship between the random variable at an unsampled location and those in its neighbourhood. Given the computed cross-variable higher-order spatial statistics, the conditional probability density function (CPDF) is approximated via polynomial expansions, which is then utilized to determine the interpolated value at the unsampled location as an expectation. In addition, the uncertainty associated with the interpolation is quantified by constructing prediction intervals of interpolated values. The proposed method is applied to a mineral deposit dataset, and the results demonstrate that it outperforms kriging methods in uncertainty quantification. The introduction of the cross-variable higher-order spatial statistics noticeably improves the quality of the interpolation since it enriches the information that can be extracted from the observed data, and this benefit is substantial when working with data that are sparse or have non-trivial dependence structures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Theoretical accounts suggest that mirror neurons play a crucial role in social cognition. The current study used transcranial-magnetic stimulation (TMS) to investigate the association between mirror neuron activation and facialemotion processing, a fundamental aspect of social cognition, among healthy adults (n = 20). Facial emotion processing of static (but not dynamic) images correlated significantly with an enhanced motor response, proposed to reflect mirror neuron activation. These correlations did not appear to reflect general facial processing or pattern recognition, and provide support to current theoretical accounts linking the mirror neuron system to aspects of social cognition. We discuss the mechanism by which mirror neurons might facilitate facial emotion recognition.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

High-Order Co-Clustering (HOCC) methods have attracted high attention in recent years because of their ability to cluster multiple types of objects simultaneously using all available information. During the clustering process, HOCC methods exploit object co-occurrence information, i.e., inter-type relationships amongst different types of objects as well as object affinity information, i.e., intra-type relationships amongst the same types of objects. However, it is difficult to learn accurate intra-type relationships in the presence of noise and outliers. Existing HOCC methods consider the p nearest neighbours based on Euclidean distance for the intra-type relationships, which leads to incomplete and inaccurate intra-type relationships. In this paper, we propose a novel HOCC method that incorporates multiple subspace learning with a heterogeneous manifold ensemble to learn complete and accurate intra-type relationships. Multiple subspace learning reconstructs the similarity between any pair of objects that belong to the same subspace. The heterogeneous manifold ensemble is created based on two-types of intra-type relationships learnt using p-nearest-neighbour graph and multiple subspaces learning. Moreover, in order to make sure the robustness of clustering process, we introduce a sparse error matrix into matrix decomposition and develop a novel iterative algorithm. Empirical experiments show that the proposed method achieves improved results over the state-of-art HOCC methods for FScore and NMI.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper discusses the following key messages. Taxonomy is (and taxonomists are) more important than ever in times of global change. Taxonomic endeavour is not occurring fast enough: in 250 years since the creation of the Linnean Systema Naturae, only about 20% of Earth's species have been named. We need fundamental changes to the taxonomic process and paradigm to increase taxonomic productivity by orders of magnitude. Currently, taxonomic productivity is limited principally by the rate at which we capture and manage morphological information to enable species discovery. Many recent (and welcomed) initiatives in managing and delivering biodiversity information and accelerating the taxonomic process do not address this bottleneck. Development of computational image analysis and feature extraction methods is a crucial missing capacity needed to enable taxonomists to overcome the taxonomic impediment in a meaningful time frame. Copyright © 2009 Magnolia Press.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Only some of the information contained in a medical record will be useful to the prediction of patient outcome. We describe a novel method for selecting those outcome predictors which allow us to reliably discriminate between adverse and benign end results. Using the area under the receiver operating characteristic as a nonparametric measure of discrimination, we show how to calculate the maximum discrimination attainable with a given set of discrete valued features. This upper limit forms the basis of our feature selection algorithm. We use the algorithm to select features (from maternity records) relevant to the prediction of failure to progress in labour. The results of this analysis motivate investigation of those predictors of failure to progress relevant to parous and nulliparous sub-populations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Selection of features that will permit accurate pattern classification is a difficult task. However, if a particular data set is represented by discrete valued features, it becomes possible to determine empirically the contribution that each feature makes to the discrimination between classes. This paper extends the discrimination bound method so that both the maximum and average discrimination expected on unseen test data can be estimated. These estimation techniques are the basis of a backwards elimination algorithm that can be use to rank features in order of their discriminative power. Two problems are used to demonstrate this feature selection process: classification of the Mushroom Database, and a real-world, pregnancy related medical risk prediction task - assessment of risk of perinatal death.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We propose expected attainable discrimination (EAD) as a measure to select discrete valued features for reliable discrimination between two classes of data. EAD is an average of the area under the ROC curves obtained when a simple histogram probability density model is trained and tested on many random partitions of a data set. EAD can be incorporated into various stepwise search methods to determine promising subsets of features, particularly when misclassification costs are difficult or impossible to specify. Experimental application to the problem of risk prediction in pregnancy is described.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Structural damage detection using measured dynamic data for pattern recognition is a promising approach. These pattern recognition techniques utilize artificial neural networks and genetic algorithm to match pattern features. In this study, an artificial neural network–based damage detection method using frequency response functions is presented, which can effectively detect nonlinear damages for a given level of excitation. The main objective of this article is to present a feasible method for structural vibration–based health monitoring, which reduces the dimension of the initial frequency response function data and transforms it into new damage indices and employs artificial neural network method for detecting different levels of nonlinearity using recognized damage patterns from the proposed algorithm. Experimental data of the three-story bookshelf structure at Los Alamos National Laboratory are used to validate the proposed method. Results showed that the levels of nonlinear damages can be identified precisely by the developed artificial neural networks. Moreover, it is identified that artificial neural networks trained with summation frequency response functions give higher precise damage detection results compared to the accuracy of artificial neural networks trained with individual frequency response functions. The proposed method is therefore a promising tool for structural assessment in a real structure because it shows reliable results with experimental data for nonlinear damage detection which renders the frequency response function–based method convenient for structural health monitoring.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador: