983 resultados para Radiation-field
Resumo:
We conducted a clinical trial to compare the molecular and cellular responses of human melanocytes and keratinocytes in vivo to solar-simulated ultraviolet radiation (SSUVR) in 57 Caucasian participants grouped according to MC1R genotype. We found that, on average, the density of epidermal melanocytes 14 days after exposure to 2 minimal erythemal dose (MED) SSUVR was twofold higher than baseline (unirradiated) skin. However, the change in epidermal melanocyte counts among people carrying germline MC1R variants (97% increase) was significantly less than those with wild-type MC1R (164% increase; P = 0.01). We also found that sunscreen applied to the skin before exposure to 2 MED SSUVR completely blocked the effects of DNA damage, p53 induction, and cellular proliferation in both melanocytes and keratinocytes.
Resumo:
Packaged software is pre-built with the intention of licensing it to users in domestic settings and work organisations. This thesis focuses upon the work organisation where packaged software has been characterised as one of the latest ‘solutions’ to the problems of information systems. The study investigates the packaged software selection process that has, to date, been largely viewed as objective and rational. In contrast, this interpretive study is based on a 21⁄2 year long field study of organisational experiences with packaged software selection at T.Co, a consultancy organisation based in the United Kingdom. Emerging from the iterative process of case study and action research is an alternative theory of packaged software selection. The research argues that packaged software selection is far from the rationalistic and linear process that previous studies suggest. Instead, the study finds that aspects of the traditional process of selection incorporating the activities of gathering requirements, evaluation and selection based on ‘best fit’ may or may not take place. Furthermore, even where these aspects occur they may not have equal weight or impact upon implementation and usage as may be expected. This is due to the influence of those multiple realities which originate from the organisational and market environments within which packages are created, selected and used, the lack of homogeneity in organisational contexts and the variously interpreted characteristics of the package in question.
Resumo:
Purpose: Prior to 2009, one of the problems faced by radiation therapists who supervised and assessed students on placement in Australian clinical centres, was that each of the six Australian universities where Radiation Therapy (RT) programmes were conducted used different clinical assessment and reporting criteria. This paper describes the development of a unified national clinical assessment and reporting form that was implemented nationally by all six universities in 2009. Methods: A four phase methodology was used to develop the new assessment form and user guide. Phase 1 included university consensus around domains of student practice and assessment, and alignment with national competency standards; Phase 2 was a national consensus workshop attended by radiation therapists involved in student supervision and assessment; Phase 3 was an action research re-iterative Delphi technique involving two rounds of a mail-out to gain further expert consensus; and stage 4 was national piloting of the developed assessment form. Results: The new assessment form includes five main domains of practice and 19 sub-domain criteria which students are assessed against during placement. Feedback from the pilot centre participants was positive, with the new form being assessed to be comprehensive and complemented by the accompanying user guide. Conclusion: The new assessment form has improved both the formative and summative assessment of students on placement, as well as enhancing the quality of feedback to students and the universities. The new national form has high acceptance from the Australian universities and has been subject to wide review by the profession.
Resumo:
Purpose The aim of this case study is to describe clinical staff perceptions of implementing a person-centred model of nursing in an outpatient radiotherapy treatment department, using a Primary Nursing/Collaborative Practice framework. The questions are: 1) what are the nursing and radiotherapy staff perspectives of the changed model of care, 2) what factors impacted on aspects of the evolving model?, and 3) how was interdisciplinary collaboration influenced by the new model? Methods An instrumental case study addressed the multiple perspectives of several radiotherapy health professionals, within a qualitative approach, to assess the new model of nursing care. Interview data were obtained from thirteen clinical staff over a six month period approximately one year after the model was implemented. Results The new model supports nurses to work more closely with the individual patient, with some perceived positive patient outcomes. Nurses reported increased satisfaction with their work, more autonomy and responsibility, and improved working relationships with medical staff. They also became more aware of the holistic approach to support positive patient outcomes. However, this study acknowledged that education was required for nurses to provide holistic care, especially in the context of complex interdisciplinary relationships. Conclusions A person-centred nursing approach in radiotherapy represents a radical change to the functional approach, providing some benefits for patients. However, the challenges of providing holistic care in the context of complex interdisciplinary relationships are evident, and this study acknowledges the importance of a team approach to addressing changes in practice in the future.
Resumo:
Mathematical descriptions of birth–death–movement processes are often calibrated to measurements from cell biology experiments to quantify tissue growth rates. Here we describe and analyze a discrete model of a birth–death-movement process applied to a typical two–dimensional cell biology experiment. We present three different descriptions of the system: (i) a standard mean–field description which neglects correlation effects and clustering; (ii) a moment dynamics description which approximately incorporates correlation and clustering effects, and; (iii) averaged data from repeated discrete simulations which directly incorporates correlation and clustering effects. Comparing these three descriptions indicates that the mean–field and moment dynamics approaches are valid only for certain parameter regimes, and that both these descriptions fail to make accurate predictions of the system for sufficiently fast birth and death rates where the effects of spatial correlations and clustering are sufficiently strong. Without any method to distinguish between the parameter regimes where these three descriptions are valid, it is possible that either the mean–field or moment dynamics model could be calibrated to experimental data under inappropriate conditions, leading to errors in parameter estimation. In this work we demonstrate that a simple measurement of agent clustering and correlation, based on coordination number data, provides an indirect measure of agent correlation and clustering effects, and can therefore be used to make a distinction between the validity of the different descriptions of the birth–death–movement process.
Resumo:
Cone-beam computed tomography (CBCT) has enormous potential to improve the accuracy of treatment delivery in image-guided radiotherapy (IGRT). To assist radiotherapists in interpreting these images, we use a Bayesian statistical model to label each voxel according to its tissue type. The rich sources of prior information in IGRT are incorporated into a hidden Markov random field model of the 3D image lattice. Tissue densities in the reference CT scan are estimated using inverse regression and then rescaled to approximate the corresponding CBCT intensity values. The treatment planning contours are combined with published studies of physiological variability to produce a spatial prior distribution for changes in the size, shape and position of the tumour volume and organs at risk. The voxel labels are estimated using iterated conditional modes. The accuracy of the method has been evaluated using 27 CBCT scans of an electron density phantom. The mean voxel-wise misclassification rate was 6.2\%, with Dice similarity coefficient of 0.73 for liver, muscle, breast and adipose tissue. By incorporating prior information, we are able to successfully segment CBCT images. This could be a viable approach for automated, online image analysis in radiotherapy.
Resumo:
Bioacoustic data can provide an important base for environmental monitoring. To explore a large amount of field recordings collected, an automated similarity search algorithm is presented in this paper. A region of an audio defined by frequency and time bounds is provided by a user; the content of the region is used to construct a query. In the retrieving process, our algorithm will automatically scan through recordings to search for similar regions. In detail, we present a feature extraction approach based on the visual content of vocalisations – in this case ridges, and develop a generic regional representation of vocalisations for indexing. Our feature extraction method works best for bird vocalisations showing ridge characteristics. The regional representation method allows the content of an arbitrary region of a continuous recording to be described in a compressed format.
Resumo:
Purpose Intensity modulated radiotherapy (IMRT) treatments require more beam-on time and produce more linac head leakage to deliver similar doses to conventional, unmodulated, radiotherapy treatments. It is necessary to take this increased leakage into account when evaluating the results of radiation surveys around bunkers that are, or will be, used for IMRT. The recommended procedure of 15 applying a monitor-unit based workload correction factor to secondary barrier survey measurements, to account for this increased leakage when evaluating radiation survey measurements around IMRT bunkers, can lead to potentially-costly over estimation of the required barrier thickness. This study aims to provide initial guidance on the validity of reducing the value of the correction factor when applied to different radiation barriers (primary barriers, doors, maze walls and other walls) by 20 evaluating three different bunker designs. Methods Radiation survey measurements of primary, scattered and leakage radiation were obtained at each of five survey points around each of three different radiotherapy bunkers and the contribution of leakage to the total measured radiation dose at each point was evaluated. Measurements at each survey point were made with the linac gantry set to 12 equidistant positions from 0 to 330o, to 25 assess the effects of radiation beam direction on the results. Results For all three bunker designs, less than 0.5% of dose measured at and alongside the primary barriers, less than 25% of the dose measured outside the bunker doors and up to 100% of the dose measured outside other secondary barriers was found to be caused by linac head leakage. Conclusions Results of this study suggest that IMRT workload corrections are unnecessary, for 30 survey measurements made at and alongside primary barriers. Use of reduced IMRT workload correction factors is recommended when evaluating survey measurements around a bunker door, provided that a subset of the measurements used in this study are repeated for the bunker in question. Reduction of the correction factor for other secondary barrier survey measurements is not recommended unless the contribution from leakage is separetely evaluated.
Resumo:
Our results demonstrate that photorefractive residual amplitude modulation (RAM) noise in electro-optic modulators (EOMs) can be reduced by modifying the incident beam intensity distribution. Here we report an order of magnitude reduction in RAM when beams with uniform intensity (flat-top) profiles, generated with an LCOS-SLM, are used instead of the usual fundamental Gaussian mode (TEM00). RAM arises from the photorefractive amplified scatter noise off the defects and impurities within the crystal. A reduction in RAM is observed with increasing intensity uniformity (flatness), which is attributed to a reduction in space charge field on the beam axis. The level of RAM reduction that can be achieved is physically limited by clipping at EOM apertures, with the observed results agreeing well with a simple model. These results are particularly important in applications where the reduction of residual amplitude modulation to 10^-6 is essential.
Resumo:
In biology, we frequently observe different species existing within the same environment. For example, there are many cell types in a tumour, or different animal species may occupy a given habitat. In modelling interactions between such species, we often make use of the mean field approximation, whereby spatial correlations between the locations of individuals are neglected. Whilst this approximation holds in certain situations, this is not always the case, and care must be taken to ensure the mean field approximation is only used in appropriate settings. In circumstances where the mean field approximation is unsuitable we need to include information on the spatial distributions of individuals, which is not a simple task. In this paper we provide a method that overcomes many of the failures of the mean field approximation for an on-lattice volume-excluding birth-death-movement process with multiple species. We explicitly take into account spatial information on the distribution of individuals by including partial differential equation descriptions of lattice site occupancy correlations. We demonstrate how to derive these equations for the multi-species case, and show results specific to a two-species problem. We compare averaged discrete results to both the mean field approximation and our improved method which incorporates spatial correlations. We note that the mean field approximation fails dramatically in some cases, predicting very different behaviour from that seen upon averaging multiple realisations of the discrete system. In contrast, our improved method provides excellent agreement with the averaged discrete behaviour in all cases, thus providing a more reliable modelling framework. Furthermore, our method is tractable as the resulting partial differential equations can be solved efficiently using standard numerical techniques.
Resumo:
This research developed and scientifically validated a new ultrasound transmission computed tomography system with the aim of quantitative assessment of a polymer gel dosimeter including dose response verification of ultrasonic parameters of attenuation, velocity and broadband ultrasound attenuation (BUA). This work was the first to investigate and report ultrasound frequency dependent attenuation in a gel dosimeter, demonstrating a dose dependence.
Resumo:
Purpose To observe the incidence rates of hamstring strain injuries (HSIs) across different competition levels and ages during the Penn Relays Carnival. Methods Over a 3-year period all injuries treated by the medical staff were recorded. The type of injury, anatomic location, event in which the injury occurred, competition level and demographic data were documented. Absolute and relative HSI (per 1000 participants) were determined and odds ratios (OR) were calculated between genders, competition levels and events. Results Throughout the study period 48,473 athletes registered to participate in the Penn Relays Carnival, with 118 HSIs treated by the medical team. High school females displayed lesser risk of HSI than high school males (OR = 0.55, p = 0.021), and masters athletes were more likely than high school (OR = 4.26, p < 0.001) and college (OR = 3.55, p = 0.001) level athletes to suffer a HSI. The 4x400m relay displayed a greater likelihood of HSI compared to the 4x100m relay (OR = 1.77, p = 0.008). Conclusions High school males and masters levels athletes are most likely to suffer HSI, and there is higher risk in 400m events compared to 100m events.
Resumo:
Purpose To investigate hyperopic shifts and the oblique (or 45-degree/135-degree) component of astigmatism at large angles in the horizontal visual field using the Hartmann-Shack technique. Methods The adult participants consisted of 6 hypermetropes, 13 emmetropes and 11 myopes. Measurements were made with a modified COAS-HD Hartmann-Shack aberrometer across T60 degrees along the horizontal visual field in 5-degree steps. Eyes were dilated with 1% cyclopentolate. Peripheral refraction was estimated as mean spherical (or spherical equivalent) refraction, with/against the rule of astigmatism and oblique astigmatism components, and as horizontal and vertical refraction components based on 3-mm major diameter elliptical pupils. Results Thirty percent of eyes showed a pattern that was a combination of type IV and type I patterns of Rempt et al. (Rempt F, Hoogerheide J, Hoogenboom WP. Peripheral retinoscopy and the skiagram. Ophthalmologica 1971;162:1Y10), which shows the characteristics of type IV (relative hypermetropia along the vertical meridian and relative myopia along the horizontal meridian) out to an angle of between 40 and 50 degrees before behaving like type I (both meridians show relative hypermetropia). We classified this pattern as type IV/I. Seven of 13 emmetropes had this pattern. As a group, there was no significant variation of the oblique component of astigmatism with angle, but about one-half of the eyes showed significant positive slopes (more positive or less negative values in the nasal field than in the temporal field) and one-fourth showed significant negative slopes. Conclusions It is often considered that a pattern of relative peripheral hypermetropia predisposes to the development of myopia. In this context, the finding of a considerable portion of emmetropes with the IV/I pattern suggests that it is unlikely that refraction at visual field angles beyond 40 degrees from fixation contributes to myopia development.
Resumo:
This study was conducted within the context of a flexible education institution where conventional educational assessment practices and tests fail to recognise and assess the creativity and cultural capital of a cohort of marginalised young people. A new assessment model which included an electronic-portfolio-social-networking system (EPS) was developed and trialled to identify and exhibit evidence of students' learning. The study aimed to discern unique forms of cultural capital (Bourdieu, 1986) possessed by students who attend the Edmund Rice Education Australia Flexible Learning Centre Network (EREAFLCN). The EPS was trialled at the case study schools in an intervention and developed a space where students could make evident culturally specific forms of capital and funds of knowledge (Gonzalez, Moll, & Amanti, 2005). These resources were evaluated, modified and developed through dialogic processes utilising assessment for learning approaches (Qualifications and Curriculum Development Agency, 2009) in online and classroom settings. Students, peers and staff engaged in the recognition, judgement, revision and evaluation of students' cultural capital in a subfield of exchange (Bourdieu, 1990). The study developed the theory of assessment for learning as a field of exchange incorporating an online system as a teaching and assessment model. The term efield has been coined to describe this particular capital exchange model. A quasi-ethnographic approach was used to develop a collective case study (Stake, 1995). This case study involved an in-depth exploration of five students' forms of cultural capital and the ways in which this capital could be assessed and exchanged using the efield model. A comparative analysis of the five cases was conducted to identify the emergent issues of students' recognisable cultural capital resources and the processes of exchange that can be facilitated to acquire legitimate credentials for these students in the Australian field of education. The participants in the study were young people at two EREAFLC schools aged between 12 and 18 years. Data was collected through interviews, observations and examination of documents made available by the EREAFLCN. The data was coded and analysed using a theoretical framework based on Bourdieu's analytical tools and a sociocultural psychology theoretical perspective. Findings suggest that processes based on dialogic relationships can identify and recognise students' forms of cultural capital that are frequently misrecognised in mainstream school environments. The theory of assessment for learning as a field of exchange was developed into praxis and integrated in an intervention. The efield model was found to be an effective sociocultural tool in converting and exchanging students' capital resources for legitimated cultural and symbolic capital in the field of education.
Resumo:
Organ motion as a result of respiration is an important field of research for medical physics. Knowledge of magnitude and direction of this motion is necessary to allow for more accurate radiotherapy treatment planning. This will result in higher doses to the tumour whilst sparing healthy tissue. This project involved human trials, where the radiation therapy patient's kidneys were CT scanned under three different conditions; whilst free breathing (FB), breath-hold at normal tidal inspiration (BHIN), and breath-hold at normal tidal expiration (BHEX). The magnitude of motion was measured by recording the outline of the kidney from a Beam's Eye View (BEV). The centre of mass of this 2D shape was calculated for each set using "ImageJ" software and the magnitude of movement determined from the change in the centroid's coordinates between the BHIN and BHEX scans. The movement ranged from, for the left and right kidneys, 4-46mm and 2-44mm in the superior/inferior (axial) plane, 1-21mm and 2- 16mm in the anterior/posterior (coronal) plane, and 0-6mm and 0-8mm in the lateral/medial (sagittal) plane. From exhale to inhale, the kidneys tended to move inferiorly, anteriorly and laterally. A standard radiotherapy plan, designed to treat the para-aortics with opposed lateral fields was performed on the free breathing (planning) CT set. The field size and arrangement was set up using the same parameters for each subject. The prescription was to deliver 45 Gray in 25 fractions. This field arrangement and prescription was then copied over to the breath hold CT sets, and the dosimetric differences were compared using Dose Volume Histograms (DVH). The point of comparison for the three sets was recorded as the percentage volume of kidney receiving less than or equal to 10 Gray. The QUASAR respiratory motion phantom was used with the range of motion determined from the human study. The phantom was imaged, planned and treated with a linear accelerator with dose determined by film. The effect of the motion was measured by the change in the penumbra of the film and compared to the penumbra from the treatment planning system.