918 resultados para RESONANCE MASS-SPECTROMETRY


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Heutzutage gewähren hochpräzise Massenmessungen mit Penning-Fallen tiefe Einblicke in die fundamentalen Eigenschaften der Kernmaterie. Zu diesem Zweck wird die freie Zyklotronfrequenz eines Ions bestimmt, das in einem starken, homogenen Magnetfeld gespeichert ist. Am ISOLTRAP-Massenspektrometer an ISOLDE / CERN können die Massen von kurzlebigen, radioaktiven Nukliden mit Halbwertszeiten bis zu einigen zehn ms mit einer Unsicherheit in der Größenordnung von 10^-8 bestimmt werden. ISOLTRAP besteht aus einem Radiofrequenz-Quadrupol zum akkumulieren der von ISOLDE gelieferten Ionen, sowie zwei Penning-Fallen zum säubern und zur Massenbestimmung der Ionen. Innerhalb dieser Arbeit wurden die Massen von neutronenreichen Xenon- und Radonisotopen (138-146Xe und 223-229Rn) gemessen. Für elf davon wurde zum ersten Mal die Masse direkt bestimmt; 229Rn wurde im Zuge dieses Experimentes sogar erstmalig beobachtet und seine Halbwertszeit konnte zu ungefähr 12 s bestimmt werden. Da die Masse eines Nuklids alle Wechselwirkungen innerhalb des Kerns widerspiegelt, ist sie einzigartig für jedes Nuklid. Eine dieser Wechselwirkungen, die Wechselwirkung zwischen Protonen und Neutronen, führt zum Beispiel zu Deformationen. Das Ziel dieser Arbeit ist eine Verbindung zwischen kollektiven Effekten, wie Deformationen und Doppeldifferenzen von Bindungsenergien, sogenannten deltaVpn-Werten zu finden. Insbesondere in den hier untersuchten Regionen zeigen deltaVpn-Werte ein sehr ungewöhnliches Verhalten, das sich nicht mit einfachen Argumenten deuten lässt. Eine Erklärung könnte das Auftreten von Oktupoldeformationen in diesen Gebieten sein. Nichtsdestotrotz ist eine quantitative Beschreibung von deltaVpn-Werten, die den Effekt von solchen Deformationen berücksichtigt mit modernen Theorien noch nicht möglich.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this study the Aerodyne Aerosol Mass Spectrometer (AMS) was used during three laboratory measurement campaigns, FROST1, FROST2 and ACI-03. The FROST campaigns took place at the Leipzig Aerosol Cloud Interaction Simulator (LACIS) at the IfT in Leipzig and the ACI-03 campaign was conducted at the AIDA facility at the Karlsruhe Institute of Technology (KIT). In all three campaigns, the effect of coatings on mineral dust ice nuclei (IN) was investigated. During the FROST campaigns, Arizona Test Dust (ATD) particles of 200, 300 and 400 nm diameter were coated with thin coatings (< 7 nm) of sulphuric acid. At these very thin coatings, the AMS was operated close to its detection limits. Up to now it was not possible to accurately determine AMS detection limits during regular measurements. Therefore, the mathematical tools to analyse the detection limits of the AMS have been improved in this work. It is now possible to calculate detection limits of the AMS under operating conditions, without losing precious time by sampling through a particle filter. The instrument was characterised in more detail to enable correct quantification of the sulphate loadings on the ATD particle surfaces. Correction factors for the instrument inlet transmission, the collection efficiency, and the relative ionisation efficiency have been determined. With these corrections it was possible to quantify the sulphate mass per particle on the ATD after the condensation of sulphuric acid on its surface. The AMS results have been combined with the ice nucleus counter results. This revealed that the IN-efficiency of ATD is reduced when it is coated with sulphuric acid. The reason for this reduction is a chemical reaction of sulphuric acid with the particle's surface. These reactions are increasingly taking place when the aerosol is humidified or heated after the coating with sulphuric acid. A detailed analysis of the solubility and the evaporation temperature of the surface reaction products revealed that most likely aluminium sulphate is produced in these reactions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The composition of the atmosphere is frequently perturbed by the emission of gaseous and particulate matter from natural as well as anthropogenic sources. While the impact of trace gases on the radiative forcing of the climate is relatively well understood the role of aerosol is far more uncertain. Therefore, the study of the vertical distribution of particulate matter in the atmosphere and its chemical composition contribute valuable information to bridge this gap of knowledge. The chemical composition of aerosol reveals information on properties such as radiative behavior and hygroscopicity and therefore cloud condensation or ice nucleus potential. rnThis thesis focuses on aerosol pollution plumes observed in 2008 during the POLARCAT (Polar Study using Aircraft, Remote Sensing, Surface Measurements and Models, of Climate, Chemistry, Aerosols, and Transport) campaign over Greenland in June/July and CONCERT (Contrail and Cirrus Experiment) campaign over Central and Western Europe in October/November. Measurements were performed with an Aerodyne compact time-of-flight aerosol mass spectrometer (AMS) capable of online size-resolved chemical characterization of non-refractory submicron particles. In addition, the origins of pollution plumes were determined by means of modeling tools. The characterized pollution episodes originated from a large variety of sources and were encountered at distinct altitudes. They included pure natural emissions from two volcanic eruptions in 2008. By the time of detection over Western Europe between 10 and 12 km altitude the plume was about 3 months old and composed to 71 % of particulate sulfate and 21 % of carbonaceous compounds. Also, biomass burning (BB) plumes were observed over Greenland between 4 and 7 km altitude (free troposphere) originating from Canada and East Siberia. The long-range transport took roughly one and two weeks, respectively. The aerosol was composed of 78 % organic matter and 22 % particulate sulfate. Some Canadian and all Siberian BB plumes were mixed with anthropogenic emissions from fossil fuel combustion (FF) in North America and East Asia. It was found that the contribution of particulate sulfate increased with growing influences from anthropogenic activity and Asia reaching up to 37 % after more than two weeks of transport time. The most exclusively anthropogenic emission source probed in the upper troposphere was engine exhaust from commercial aircraft liners over Germany. However, in-situ characterization of this aerosol type during aircraft chasing was not possible. All long-range transport aerosol was found to have an O:C ratio close to or greater than 1 implying that low-volatility oxygenated organic aerosol was present in each case despite the variety of origins and the large range in age from 3 to 100 days. This leads to the conclusion that organic particulate matter reaches a final and uniform state of oxygenation after at least 3 days in the free troposphere. rnExcept for aircraft exhaust all emission sources mentioned above are surface-bound and thus rely on different types of vertical transport mechanisms, such as direct high altitude injection in the case of a volcanic eruption, or severe BB, or uplift by convection, to reach higher altitudes where particles can travel long distances before removal mainly caused by cloud scavenging. A lifetime for North American mixed BB and FF aerosol of 7 to 11 days was derived. This in consequence means that emission from surface point sources, e.g. volcanoes, or regions, e.g. East Asia, do not only have a relevant impact on the immediate surroundings but rather on a hemispheric scale including such climate sensitive zones as the tropopause or the Arctic.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis reports an integrated analytical and physicochemical approach for the study of natural substances and new drugs based on mass spectrometry techniques combined with liquid chromatography. In particular, Chapter 1 concerns the study of Berberine a natural substance with pharmacological activity for the treatment of hepatobiliary and intestinal diseases. The first part focused on the relationships between physicochemical properties, pharmacokinetics and metabolism of Berberine and its metabolites. For this purpose a sensitive HPLC-ES-MS/MS method have been developed, validated and used to determine these compounds during their physicochemical properties studies and plasma levels of berberine and its metabolites including berberrubine(M1), demethylenberberine(M3), and jatrorrhizine(M4) in humans. Data show that M1, could have an efficient intestinal absorption by passive diffusion due to a keto-enol tautomerism confirmed by NMR studies and its higher plasma concentration. In the second part of Chapter 1, a comparison between M1 and BBR in vivo biodistribution in rat has been studied. In Chapter 2 a new HPLC-ES-MS/MS method for the simultaneous determination and quantification of glucosinolates, as glucoraphanin, glucoerucin and sinigrin, and isothiocyanates, as sulforaphane and erucin, has developed and validated. This method has been used for the analysis of functional foods enriched with vegetable extracts. Chapter 3 focused on a physicochemical study of the interaction between the bile acid sequestrants used in the treatment of hypercholesterolemia including colesevelam and cholestyramine with obeticolic acid (OCA), potent agonist of nuclear receptor farnesoid X (FXR). In particular, a new experimental model for the determination of equilibrium binding isotherm was developed. Chapter 4 focused on methodological aspects of new hard ionization coupled with liquid chromatography (Direct-EI-UHPLC-MS) not yet commercially available and potentially useful for qualitative analysis and for “transparent” molecules to soft ionization techniques. This method was applied to the analysis of several steroid derivatives.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Radiation metabolomics can be defined as the global profiling of biological fluids to uncover latent, endogenous small molecules whose concentrations change in a dose-response manner following exposure to ionizing radiation. In response to the potential threat of nuclear or radiological terrorism, the Center for High-Throughput Minimally Invasive Radiation Biodosimetry was established to develop field-deployable biodosimeters based, in part, on rapid analysis by mass spectrometry of readily and easily obtainable biofluids. In this review, we briefly summarize radiation biology and key events related to actual and potential nuclear disasters, discuss the important contributions the field of mass spectrometry has made to the field of radiation metabolomics, and summarize current discovery efforts to use mass spectrometry-based metabolomics to identify dose-responsive urinary constituents, and ultimately to build and deploy a noninvasive high-throughput biodosimeter.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A liquid chromatographic-mass spectrometric assay with atmospheric pressure chemical ionization for quantification of ondansetron and its main metabolite 8-hydroxyondansetron in human plasma was presented. The enantiomeric separation was achieved on a Chiralcel OD-R column containing cellulose tris-(3,5-dimethylphenylcarbamate). The validation data were within the required limits. The assay was successfully applied to authentic plasma samples. Quantitative results from postoperative patients receiving ondansetron demonstrated a great interindividual variability in postoperative plasma drug concentrations, the metabolites were not detected in their unconjugated form. A wide variation in the S-(+)-/R-(-)-ondansetron concentration ratio between 0.14 and 7.18 is indicative for a stereoselective disposition or metabolism. In further studies CYP2D6 and CYP3A4 genotype dependent metabolism of ondansetron enantiomers as well as of co-administered drugs and clinical efficacy of the medication should be tested.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper describes informatics for cross-sample analysis with comprehensive two-dimensional gas chromatography (GCxGC) and high-resolution mass spectrometry (HRMS). GCxGC-HRMS analysis produces large data sets that are rich with information, but highly complex. The size of the data and volume of information requires automated processing for comprehensive cross-sample analysis, but the complexity poses a challenge for developing robust methods. The approach developed here analyzes GCxGC-HRMS data from multiple samples to extract a feature template that comprehensively captures the pattern of peaks detected in the retention-times plane. Then, for each sample chromatogram, the template is geometrically transformed to align with the detected peak pattern and generate a set of feature measurements for cross-sample analyses such as sample classification and biomarker discovery. The approach avoids the intractable problem of comprehensive peak matching by using a few reliable peaks for alignment and peak-based retention-plane windows to define comprehensive features that can be reliably matched for cross-sample analysis. The informatics are demonstrated with a set of 18 samples from breast-cancer tumors, each from different individuals, six each for Grades 1-3. The features allow classification that matches grading by a cancer pathologist with 78% success in leave-one-out cross-validation experiments. The HRMS signatures of the features of interest can be examined for determining elemental compositions and identifying compounds.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We describe here a new reversed-phase high-performance liquid chromatography with mass spectrometry detection method for quantifying intact cytokinin nucleotides in human K-562 leukemia cells. Tandem mass spectrometry was used to identify the intracellular metabolites (cytokinin monophosphorylated, diphosphorylated, and triphosphorylated nucleotides) in riboside-treated cells. For the protein precipitation and sample preparation, a trichloroacetic acid extraction method is used. Samples are then back-extracted with diethyl ether, lyophilized, reconstituted, and injected into the LC system. Analytes were quantified in negative selected ion monitoring mode using a single quadrupole mass spectrometer. The method was validated in terms of retention time stabilities, limits of detection, linearity, recovery, and analytical accuracy. The developed method was linear in the range of 1-1,000 pmol for all studied compounds. The limits of detection for the analytes vary from 0.2 to 0.6 pmol.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A liquid chromatography tandem mass spectrometry (LC-MS/MS) confirmatory method for the simultaneous determination of nine corticosteroids in liver, including the four MRL compounds listed in Council Regulation 37/2010, was developed. After an enzymatic deconjugation and a solvent extraction of the liver tissue, the resulting solution was cleaned up through an SPE Oasis HLB cartridge. The analytes were then detected by liquid chromatography-negative-ion electrospray tandem mass spectrometry, using deuterium-labelled internal standards. The procedure was validated as a quantitative confirmatory method according to the Commission Decision 2002/657/EC criteria. The results showed that the method was suitable for statutory residue testing regarding the following performance characteristics: instrumental linearity, specificity, precision (repeatability and intra-laboratory reproducibility), recovery, decision limit (CCα), detection capability (CCβ) and ruggedness. All the corticosteroids can be detected at a concentration around 1 μg kg(-1); the recoveries were above 62% for all the analytes. Repeatability and reproducibility (within-laboratory reproducibility) for all the analytes were below 7.65% and 15.5%, respectively.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A universal and robust analytical method for the determination of Δ9-tetrahydrocannabinol (THC) and two of its metabolites Δ9-(11-OH)-tetrahydrocannabinol (11-OH-THC) and 11-nor-Δ9-carboxy-tetrahydrocannabinol (THC-COOH) in human whole blood was developed and validated for use in forensic toxicology. Protein precipitation, integrated solid phase extraction and on-line enrichment followed by high-performance liquid chromatography separation and detection with a triple quadrupole mass spectrometer were combined. The linear ranges used for the three cannabinoids were from 0.5 to 20 ng/mL for THC and 11-OH-THC and from 2.5 to 100 ng/mL for THC-COOH, therefore covering the requirements for forensic use. Correlation coefficients of 0.9980 or better were achieved for all three analytes. No relevant hydrolysis was observed for THC-COOH glucuronide with this procedure--in contrast to our previous GC-MS procedure, which obviously lead to an artificial increase of the THC-COOH concentration due to the hydrolysis of the glucuronide-conjugate occurring at high pH during the phase-transfer catalyzed methylation step.