978 resultados para Quantum-mechanical calculation
Resumo:
In this work, doped AlGaAs/GaAs parabolic quantum wells (PQW) with different well widths (from 1000 angstrom up to 3000 angstrom) were investigated by means of photoluminescence (PL) measurements. In order to achieve the 2DEG inside the PQW Si delta doping is placed at both side of the well. We have observed that the thickness of this space layer plays a major rule on the characteristics of the 2DEG. It has to be thicker enough to prevent any diffusions of Si to the well and thin enough to allow electrons migration inside the well. From PL measurement, we have observed beside the intra well transitions, indirect transitions involving still trapped electron on the delta doping and holes inside the PQW. For the thinness sample, we have measured a well defined PL peak at low energy side of the GaAs bulk emission. With the increasing of the well thickness this peak intensity decreases and for the thickest sample it almost disappears. Our theoretical calculation indicated that carriers (electron and holes) are more placed at the center of the PQW. In this way, when the well thickness increases the distance between electrons on the delta doping and holes on the well also increases, it decreases the probability of occurrence of these indirect optical transitions. (C) 2012 Published by Elsevier B.V. Selection and/or peer-review under responsibility of Universidade Federal de Juiz de Fora, Brazil.
Resumo:
Studies has been reported a significant incidence of chipping of the feldspathic porcelain veneer in zirconia-based restorations. The purpose of this study was to compare the three-point flexural strength (MPa), Weibull parameters, Vickers hardness (VHN) and Vickers indentation fracture toughness (MPa/mm(1/2)) in feldspatic porcelains for metal and for zirconia frameworks. Bar specimens were made with the porcelains e.MaxCeram (EM) and VitaVM9 (V9) for zirconia core, and Duceragold (DG) and VitaVMK95 (VK) for metal core (n = 15). Kruskal-Wallis and Dun test were used for statistical analysis. There was no significant difference (p=0.31) among the porcelains in the flexural strength (Median = 73.2; 74.6; 74.5; 74.4). Weibull calculation presented highest reliability for VK (10.8) followed by em (7.1), V9 (5.7) and DG (5.6). Vickers hardness test showed that em (536.3), V9 (579.9) and VK (522.1) had no difference and DG (489.6) had the lowest value (p<.001). The highest fracture toughness was to VK (1.77), DG (1.58) had an intermediate value while V9 (1.33) and em (1.18) had the lowest values (p<.001). Despite of the suitable flexural strength, reliability and high hardness, the porcelains used to zirconia-based fixed dental prostheses showed lower fracture toughness values.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
We present the qualitative differences in the phase transitions of the mono-mode Dicke model in its integrable and chaotic versions. These qualitative differences are shown to be connected to the degree of entanglement of the ground state correlations as measured by the linear entropy. We show that a first order phase transition occurs in the integrable case whereas a second order in the chaotic one. This difference is also reflected in the classical limit: for the integrable case the stable fixed point in phase space undergoes a Hopf type whereas the second one a pitchfork type bifurcation. The calculation of the atomic Wigner functions of the ground state follows the same trends. Moreover, strong correlations are evidenced by its negative parts. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Some methods have been developed to calculate the su(q)(2) Clebsch-Gordan coefficients (CGC). Here we develop a method based on the calculation of Clebsch-Gordan generating functions through the use of 'quantum algebraic' coherent states. Calculating the su(q)(2) CGC by means of this generating function is an easy and straightforward task.
Resumo:
Gauge fields in the light front are traditionally addressed via, the employment of an algebraic condition n·A = 0 in the Lagrangian density, where Aμ is the gauge field (Abelian or non-Abelian) and nμ is the external, light-like, constant vector which defines the gauge proper. However, this condition though necessary is not sufficient to fix the gauge completely; there still remains a residual gauge freedom that must be addressed appropriately. To do this, we need to define the condition (n·A) (∂·A) = 0 with n·A = 0 = ∂·A. The implementation of this condition in the theory gives rise to a gauge boson propagator (in momentum space) leading to conspicuous nonlocal singularities of the type (k·n)-α where α = 1, 2. These singularities must be conveniently treated, and by convenient we mean not only mathemathically well-defined but physically sound and meaningful as well. In calculating such a propagator for one and two noncovariant gauge bosons those singularities demand from the outset the use of a prescription such as the Mandelstam-Leibbrandt (ML) one. We show that the implementation of the ML prescription does not remove certain pathologies associated with zero modes. However we present a causal, singularity-softening prescription and show how to keep causality from being broken without the zero mode nuisance and letting only the propagation of physical degrees of freedom.
Resumo:
The glued-laminated lumber (glulam) technique is an efficient process for making rational use of wood. Fiber-Reinforced Polymers (FRPs) associated with glulam beams provide significant gains in terms of strength and stiffness, and also alter the mode of rupture of these structural elements. In this context, this paper presents a theoretical model for designing reinforced glulam beams. The model allows for the calculation of the bending moment, the hypothetical distribution of linear strains along the height of the beam, and considers the wood has a linear elastic fragile behavior in tension parallel to the fibers and bilinear in compression parallel to the fibers, initially elastic and subsequently inelastic, with a negative decline in the stress-strain diagram. The stiffness was calculated by the transformed section method. Twelve non-reinforced and fiberglass reinforced glulam beams were evaluated experimentally to validate the proposed theoretical model. The results obtained indicate good congruence between the experimental and theoretical values.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Electronic properties of disordered binary alloys are studied via the calculation of the average Density of States (DOS) in two and three dimensions. We propose a new approximate scheme that allows for the inclusion of local order effects in finite geometries and extrapolates the behavior of infinite systems following finite-size scaling ideas. We particularly investigate the limit of the Quantum Site Percolation regime described by a tight-binding Hamiltonian. This limit was chosen to probe the role of short range order (SRO) properties under extreme conditions. The method is numerically highly efficient and asymptotically exact in important limits, predicting the correct DOS structure as a function of the SRO parameters. Magnetic field effects can also be included in our model to study the interplay of local order and the shifted quantum interference driven by the field. The average DOS is highly sensitive to changes in the SRO properties and striking effects are observed when a magnetic field is applied near the segregated regime. The new effects observed are twofold: there is a reduction of the band width and the formation of a gap in the middle of the band, both as a consequence of destructive interference of electronic paths and the loss of coherence for particular values of the magnetic field. The above phenomena are periodic in the magnetic flux. For other limits that imply strong localization, the magnetic field produces minor changes in the structure of the average DOS. © World Scientific Publishing Company.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
This work reports the investigation on the structural differences between InAs quantum rings and their precursor quantum dots species as well as on the presence of piezoelectric fields and asymmetries in these nanostructures. The experimental results show significant reduction in the ring dimensions when the sizes of capped and uncapped ring and dot samples are compared. The iso-lattice parameter mapped by grazing-incidence x-ray diffraction has revealed the lateral extent of strained regions in the buried rings. A comparison between strain and composition of dot and ring structures allows inferring on how the ring formation and its final configuration may affect optical response parameters. Based on the experimental observations, a discussion has been introduced on the effective potential profile to emulate theoretically the ring-shape confinement. The effects of confinement and strain field modulation on electron and hole band structures are simulated by a multiband k.p calculation. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4733964]
Resumo:
Computer simulations have become an important tool in physics. Especially systems in the solid state have been investigated extensively with the help of modern computational methods. This thesis focuses on the simulation of hydrogen-bonded systems, using quantum chemical methods combined with molecular dynamics (MD) simulations. MD simulations are carried out for investigating the energetics and structure of a system under conditions that include physical parameters such as temperature and pressure. Ab initio quantum chemical methods have proven to be capable of predicting spectroscopic quantities. The combination of these two features still represents a methodological challenge. Furthermore, conventional MD simulations consider the nuclei as classical particles. Not only motional effects, but also the quantum nature of the nuclei are expected to influence the properties of a molecular system. This work aims at a more realistic description of properties that are accessible via NMR experiments. With the help of the path integral formalism the quantum nature of the nuclei has been incorporated and its influence on the NMR parameters explored. The effect on both the NMR chemical shift and the Nuclear Quadrupole Coupling Constants (NQCC) is presented for intra- and intermolecular hydrogen bonds. The second part of this thesis presents the computation of electric field gradients within the Gaussian and Augmented Plane Waves (GAPW) framework, that allows for all-electron calculations in periodic systems. This recent development improves the accuracy of many calculations compared to the pseudopotential approximation, which treats the core electrons as part of an effective potential. In combination with MD simulations of water, the NMR longitudinal relaxation times for 17O and 2H have been obtained. The results show a considerable agreement with the experiment. Finally, an implementation of the calculation of the stress tensor into the quantum chemical program suite CP2K is presented. This enables MD simulations under constant pressure conditions, which is demonstrated with a series of liquid water simulations, that sheds light on the influence of the exchange-correlation functional used on the density of the simulated liquid.
Resumo:
The aim of this work is to measure the stress inside a hard micro object under extreme compression. To measure the internal stress, we compressed ruby spheres (a-Al2O3: Cr3+, 150 µm diameter) between two sapphire plates. Ruby fluorescence spectrum shifts to longer wavelengths under compression and can be related to the internal stress by a conversion coefficient. A confocal laser scanning microscope was used to excite and collect fluorescence at desired local spots inside the ruby sphere with spatial resolution of about 1 µm3. Under static external loads, the stress distribution within the center plane of the ruby sphere was measured directly for the first time. The result agreed to Hertz’s law. The stress across the contact area showed a hemispherical profile. The measured contact radius was in accord with the calculation by Hertz’s equation. Stress-load curves showed spike-like decrease after entering non-elastic phase, indicating the formation and coalescence of microcracks, which led to relaxing of stress. In the vicinity of the contact area luminescence spectra with multiple peaks were observed. This indicated the presence of domains of different stress, which were mechanically decoupled. Repeated loading cycles were applied to study the fatigue of ruby at the contact region. Progressive fatigue was observed when the load exceeded 1 N. As long as the load did not exceed 2 N stress-load curves were still continuous and could be described by Hertz’s law with a reduced Young’s modulus. Once the load exceeded 2 N, periodical spike-like decreases of the stress could be observed, implying a “memory effect” under repeated loading cycles. Vibration loading with higher frequencies was applied by a piezo. Redistributions of intensity on the fluorescence spectra were observed and it was attributed to the repopulation of the micro domains of different elasticity. Two stages of under vibration loading were suggested. In the first stage continuous damage carried on until certain limit, by which the second stage, e.g. breakage, followed in a discontinuous manner.
Resumo:
Die Untersuchung von dissipativen Quantensystemen erm¨oglicht es, Quantenph¨anomene auch auf makroskopischen L¨angenskalen zu beobachten. Das in dieser Dissertation gew¨ahlte mikroskopische Modell erlaubt es, den bisher nur ph¨anomenologisch zug¨anglichen Effekt der Quantendissipation mathematisch und physikalisch herzuleiten und zu untersuchen. Bei dem betrachteten mikroskopischen Modell handelt es sich um eine 1-dimensionale Kette von harmonischen Freiheitsgraden, die sowohl untereinander als auch an r anharmonische Freiheitsgrade gekoppelt sind. Die F¨alle einer, respektive zwei anharmonischer Bindungen werden in dieser Arbeit explizit betrachtet. Hierf¨ur wird eine analytische Trennung der harmonischen von den anharmonischen Freiheitsgraden auf zwei verschiedenen Wegen durchgef¨uhrt. Das anharmonische Potential wird als symmetrisches Doppelmuldenpotential gew¨ahlt, welches mit Hilfe der Wick Rotation die Berechnung der ¨Uberg¨ange zwischen beiden Minima erlaubt. Das Eliminieren der harmonischen Freiheitsgrade erfolgt mit Hilfe des wohlbekannten Feynman-Vernon Pfadintegral-Formalismus [21]. In dieser Arbeit wird zuerst die Positionsabh¨angigkeit einer anharmonischen Bindung im Tunnelverhalten untersucht. F¨ur den Fall einer fernab von den R¨andern lokalisierten anharmonischen Bindung wird ein Ohmsches dissipatives Tunneln gefunden, was bei der Temperatur T = 0 zu einem Phasen¨ubergang in Abh¨angigkeit einer kritischen Kopplungskonstanten Ccrit f¨uhrt. Dieser Phasen¨ubergang wurde bereits in rein ph¨anomenologisches Modellen mit Ohmscher Dissipation durch das Abbilden des Systems auf das Ising-Modell [26] erkl¨art. Wenn die anharmonische Bindung jedoch an einem der R¨ander der makroskopisch grossen Kette liegt, tritt nach einer vom Abstand der beiden anharmonischen Bindungen abh¨angigen Zeit tD ein ¨Ubergang von Ohmscher zu super- Ohmscher Dissipation auf, welche im Kern KM(τ ) klar sichtbar ist. F¨ur zwei anharmonische Bindungen spielt deren indirekteWechselwirkung eine entscheidende Rolle. Es wird gezeigt, dass der Abstand D beider Bindungen und die Wahl des Anfangs- und Endzustandes die Dissipation bestimmt. Unter der Annahme, dass beide anharmonischen Bindung gleichzeitig tunneln, wird eine Tunnelwahrscheinlichkeit p(t) analog zu [14], jedoch f¨ur zwei anharmonische Bindungen, berechnet. Als Resultat erhalten wir entweder Ohmsche Dissipation f¨ur den Fall, dass beide anharmonischen Bindungen ihre Gesamtl¨ange ¨andern, oder super-Ohmsche Dissipation, wenn beide anharmonischen Bindungen durch das Tunneln ihre Gesamtl¨ange nicht ¨andern.