954 resultados para Platinum
Resumo:
We study the effects of pulse heating parameters on the micro bubble behavior of a platinum microheater (100 mu m x 20 mu m) immersed in a methanol pool. The experiment covers the heat fluxes of 10-37 MW/m(2) and pulse frequencies of 25-500 Hz. The boiling incipience is initiated at the superheat limit of methanol, corresponding to the homogeneous nucleation. Three types of micro boiling patterns are identified. The first type is named as the bubble explosion and regrowth, consisting of a violent explosive boiling and shrinking, followed by a slower bubble regrowth and subsequent shrinking, occurring at lower heat fluxes. The second type, named as the bubble breakup and attraction, consists of the violent explosive boiling, bubble breakup and emission, bubble attraction and coalescence process, occurring at higher heat fluxes than those of the first type. The third type, named as the bubble size oscillation and large bubble formation, involves the initial explosive boiling, followed by a short periodic bubble growth and shrinking. Then the bubble continues to increase its size, until a constant bubble size is reached which is larger than the microheater length.
Resumo:
Transient flow patterns and bubble slug lengths were investigated with oxygen gas (O-2) bubbles produced by catalytic chemical reactions using a high speed camera bonded with a microscope. The microreactor consists of an inlet liquid plenum, nine parallel rectangular microchannels followed by a micronozzle, using the MEMS fabrication technique. The etched surface was deposited by the thin platinum film, which is acted as the catalyst. Experiments were performed with the inlet mass concentration of the hydrogen peroxide from 50% to 90% and the pressure drop across the silicon chip from 2.5 to 20.0 kPa. The silicon chip is directly exposed in the environment thus the heat released via the catalytic chemical reactions is dissipated into the environment and the experiment was performed at the room temperature level. It is found that the two-phase flow with the catalytic chemical reactions display the cyclic behavior. A full cycle consists of a short fresh liquid refilling stage, a liquid decomposition stage followed by the bubble slug flow stage. At the beginning of the bubble slug flow stage, the liquid slug number reaches maximum, while at the end of the bubble slug flow stage the liquid slugs are quickly flushed out of the microchannels. Two or three large bubbles are observed in the inlet liquid plenum, affecting the two-phase distributions in microchannels. The bubble slug lengths, cycle periods as well as the mass flow rates are analyzed with different mass concentrations of hydrogen peroxide and pressure drops. The bubble slug length is helpful for the selection of the future microreactor length ensuring the complete hydrogen peroxide decomposition. Future studies on the temperature effect on the transient two-phase flow with chemical reactions are recommended.
Resumo:
本文实验研究了地面重力环境中过冷度和加热铂丝直径对FC-72和丙酮池沸腾传热临界热流现象的影响. 实验结果表明,临界热流具有明显的尺度效应,其特征随Bond数范围的不同而不同,但具体的分区准则依赖于工质的物性. 在中等和大的Bond数区域,过冷度对临界热流的影响与铂丝直径无关;而在小Bond数区域,过冷度效应与尺度明显相关
Resumo:
In the past years, steady pool boiling of degassed R113 on thin platinum wires has been studied systematically in our lab, including experiments in long-term microgravity aboard RS-22, in short-term microgravity in the Drop Tower Beijing / NMLC, and in normal gravity on the ground. Slight enhancement of nucleate boiling heat transfer is observed in microgravity, while dramatic changes of bubble behaviors are much evident. The value of CHF in microgravity is lower than that in normal gravity, but it can be predicted well by the Lienhard-Dhir correlation, although the dimensionless radius in the present case is far beyond its initial application range. The scaling of CHF with gravity is thus much different from the traditional viewpoint. Considering the influence of the Marangoni effects, the different characteristics of bubble behaviors in microgravity have been explained. A new bubble departure model has also been proposed, which can predict the whole observation both in microgravity and in normal gravity.
Resumo:
Boiling is an extremely complicated and illusive process. Microgravity experiments offer a unique opportunity to study the complex interactions without external forces, such as buoyancy, which can affect the bubble dynamics and the related heat transfer. Furthermore, they can also provide a means to study the actual influence of gravity on the boiling. Two research projects on pool boiling in microgravity have been conducted aboard the Chinese recoverable satellites. Ground-based experiments both in normal gravity and in short-term microgravity in the Drop Tower Beijing and numerical simulations have also been performed. Steady boiling of R113 on thin platinum wires was studied with a temperature-controlled heating method, while quasi-steady boiling of FC-72 on a plane plate was investigated with an exponentially increasing heating voltage. It was found that the bubble dynamics in microgravity has a distinct difference from that in normal gravity, and that the heat transfer characteristic is depended upon the bubble dynamics. Lateral motions of bubbles on the heaters were observed before their departure in microgravity. The surface oscillation of the merged bubbles due to lateral coalescence between adjacent bubbles drove it to detach from the heaters. Slight enhancement of heat transfer on wires is observed in microgravity, while diminution is evident for high heat flux in the plate case.
Resumo:
A series of Pt/Mg-Al-O catalysts with different Mg/Al atomic ratios were prepared. The NOx storage capacities of these catalysts were measured by isothermal storage at 350 degreesC. It was found that the NOx storage capacity increased with increasing Mg/Al atomic ratios. The catalytic behaviors of Pt/Mg-Al-O and Pt/MgO were studied with storage-reduction cycles at 400 degreesC. Under oxidizing conditions, NOx concentration in the outlet gas gradually increased with time, which indicated the catalysts could store NOx effectively. After a switch from oxidizing conditions to reducing conditions, NOx desorption peak emerged immediately due to the incomplete reduction of stored NOx, which lowered the total NOx conversion. With increasing Mg/Al atomic ratio in the catalysts, NOx conversion increases. Pt/MgO has the highest NOx conversion because of its best activity in the reduction of NOx by C3H6. It seems that with an increasing amount of MgO in the catalysts, the self-poisoning of Pt-sites by adsorbed species during the reaction of NOx with C3H6 may be inhibited effectively.
Resumo:
Pt3Sn/C catalyst was prepared by a modified polyol process and treated in air, H-2/Ar, and Ar atmosphere, respectively. XRD analyses indicate that all of these catalysts have face-centered cubic (fcc) crystal structure. Temperature-programmed reduction (TPR) experiments show that more Sn exists in zero-valence in the Ar-treated PtSn catalyst than in the others. Cyclic voltammetry (CV), chronoamperometry (CA) experiments, and the performance tests of direct ethanol fuel cell (DEFC) indicate that the catalytic activity of PtSn/C for ethanol oxidation was affected significantly by the chemical state of Sn in catalyst particles. The as-prepared PtSn/C gives the higher power density, while Ar-treated PtSn/C shows the lower cell performance. It seems that the multivalence Sn rather than the zero-valence Sn in the PtSn catalyst is the favorable form for ethanol oxidation. Energy dispersion X-ray analysis (EDX) of the PtSn/C-as prepared and PtSn/C (after stability test) shows the active species (platinum, tin, and oxygen) composition changed to a different extent. Further attempt to improve the catalyst stability is needed.
Resumo:
The electrocatalysts of Pt/C, PtRu/C and Ru/C were prepared by the impregnation method. The facet characterization, the dispersion and the particle size for the catalysts were determined by means of X-ray diffraction and transmission electron microscopy. X-ray photoelectron spectroscopy was also used to analyze the state and the valency of the noble metals. The results show that the particle size was in nanometer range and the binary metals have come into being an alloy. The platinum in the catalysts existed in zero valency. The valency of the ruthenium on the surface is different from that in the body, while the ruthenium on the surface existed in oxide-form. PtRu/C and Pt/C are of good activity to the electrooxidation of hydrogen except Ru/C. PtRu/C is more tolerant of CO than Pt/C, and CO is only adsorbed on Pt.
Resumo:
Molybdenum phosphide (MoP) and supported molybdenum phosphide (MoP/gamma-Al2O3) have been prepared by the temperature-programmed reduction method. The surface sites of the MoP/gamma-Al2O3 catalyst were characterized by carbon monoxide (CO) adsorption with in situ Fourier transform infrared (FT-IR) spectroscopy. A characteristic IR band at 2037 cm(-1) was observed on the MoP/gamma-Al2O3 that was reduced at 973 K. This band is attributed to linearly adsorbed CO on Mo atoms of the MoP surface and is similar to IR bands at 2040-2060 cm(-1), which correspond to CO that has been adsorbed on some noble metals, such as platinum, palladium, and rhodium. Density functional calculations of the structure of molybdenum phosphides, as well as CO chemisorption on the MoP(001) surface, have also been studied on periodic surface models, using the generalized gradient approximation (GGA) for the exchange-correlation functional. The results show that the chemisorption of CO on MoP occurred mainly on top of molybdenum, because the bonding of CO requires a localized mininum potential energy. The adsorption energy obtained is DeltaH(ads) approximate to -2.18 eV, and the vibrational frequency of CO is 2047 cm-1, which is in good agreement with the IR result of CO chernisorption on MoP/gamma-Al2O3.
Resumo:
The reaction of producing hydrogen for fuel cell which used normal octane as gasoline or diesel oil reactant through catalytic partial oxidizing and steam reforming method has been researched in the fixed-bed reactor. A series of catalysts that mainly used nickel supported on Al2O3 have been studied. It showed that the activity of the catalyst was increased with the content of nickel by using only nickel supported on Al2O3. However, its activity was not obviously increased when the content of nickel was over 5 wt%. The conversion ratio of normal octane and hydrogen selectivity were higher at higher reaction temperature. The single noble catalyst of palladium had better stability compared with that of platinum catalyst although their activity and selectivity were similar during the experimental reaction temperature. The prepared bimetallic catalyst consisted mainly of nickel and little noble metal of palladium supported on Al2O3. It showed that this catalyst had higher activity and selectivity, especially at lower or higher reaction temperatures compared with single nickel or palladium catalyst, and better stability. ((C) 2001 International Association for Hydrogen Energy. Published by Elsevier Science Ltd. All rights reserved.
Resumo:
By attaching a bulky, inductively electron-with drawing trifluoromethyl (CF3) group on the pyridyl ring of the rigid 2-[3(N-phenylcarbazolyl)]pyridine cyclometalated ligand, we successfully synthesized a new heteroleptic orange-emitting phosphorescent iridium(III) complex [Ir(L-1)(2)(acac)] 1 (HL1=5-trifluoromethyl-2-[3-(N-phenylcarbazolyl)]pyridine, Hacac = acetylacetone) in good yield.
Resumo:
With the goal to provide organometallic triplet emitters with good hole-injection/hole-transporting properties, highly amorphous character for simple solution-processed organic light-emitting diodes, and negligible triplet-triplet (T-T) annihilation, a series of new phosphorescent cyclometalated Ir-III and Pt-II complexes with triphenylamine-anchored fluorenylpyridine dendritic ligands were synthesized and characterized. The photophysical, thermal, electrochemical and electroluminescent properties of these molecules are reported.
Resumo:
It was reported for the first time that the electrocatalytic activity of the Carbon-supported Pd-Ir (Pd-Ir/C) catalyst with the suitable atomic ratio of Pd and Ir for the oxidation of formic acid in the direct formic acid fuel cell (DFAFC) is better than that of the Carbon-supported Pd (Pd/C) catalyst, although Ir has no electrocatalytic activity for the oxidation of formic acid. The potential of the anodic peak of formic acid at the Pd-Ir/C catalyst electrode with the atomic ratio of Pd and Ir = 5:1 is 50 mV more negative than that and the peak current density is 13% higher than that at the Pd/C catalyst electrode.
Resumo:
In this work, rapid and controllable confinement of one-dimensional (1D) hollow PtCo nanomaterials on an indium tin oxide (ITO) electrode surface was simply realized via magnetic attraction. The successful assembly was verified by scanning electron microscopy (SEM) and cyclic voltammetry, which showed that a longer exposure time of the electrode to the suspension of these 1D hollow nanomaterials (magnetic suspension) led to a larger amount of attached 1D hollow PtCo nanomaterials.
Resumo:
This review focuses on the synthesis, assembly, surface functionalization, as well as application of inorganic nanostructures. Electrochemical and wet- chemical methods are demonstrated to be effective approaches to make metal nanostructures under control without addition of a reducing agent or protecting agent. Owing to the unique physical and chemical properties of the nano-sized materials, novel applications are introduced using inorganic nanomaterials, such as electrocatalysis, photoelectricity, spectrochemistry, and analytical chemistry.