969 resultados para Plant Pathology
Resumo:
2011
Resumo:
2011
Resumo:
Abstract Grapevine leafroll disease is associated with several species of phloem-limited grapevine leafrollassociated viruses (GLRaV), some of which are transmitted by mealybugs and scale insects. The grape phylloxera, Daktulosphaira vitifoliae (Fitch) Biotype A (Hemiptera: Phylloxeridae), is a common vineyard pest that feeds on the phloem of vine roots. There is concern that these insects may transmit one or more GLRaV species, particularly GLRaV-2, a species in the genus Closterovirus. A field survey was performed in vineyards with a high incidence of grapevine leafroll disease and D. vitifoliae was assessed for acquisition of GLRaV. In greenhouse experiments, the ability of D. vitifoliae to transmit GLRaV from infected root sections or vines to co-planted virus-free recipient vines was tested. There were no GLRaV-positive D. vitifoliae in the field survey, nor did D. vitifoliae transmit GLRaV- 1, ?2, ?3, or -4LV in greenhouse transmission experiments. Some insects tested positive for GLRaV after feeding on infected source vines in the greenhouse, however there was no evidence of virus transmission to healthy plants. These findings, in combination with the sedentary behaviour of the soil biotype of D. vitifoliae, make it unlikely that D. vitifoliae is a vector of any GLRaV.
Resumo:
2011
Resumo:
2011
Resumo:
2011
Resumo:
Apples are commercially grown in Brazil in a subtropical environment that favors the development of fungal diseases such as Glomerella leaf spot (GLS) caused mainly by Glomerella cingulata (anamorph Colletotrichum gloeosporioides). The main objective of this work was to evaluate the effect of mixed infections by Apple stem grooving virus (ASGV) and Apple stem pitting virus (ASPV) on the infection and the colonization processes of C. gloeosporiodes in cv. Maxi Gala plants. Leaves of 16-month-old potted plants were spray-inoculated and both the disease incidence and lesion count were monitored over time and leaf severity was assessed in the final evaluation using an image analysis tool. Results showed that initial infection estimated from a monomolecular model fitted to progress of lesion count was higher and the incubation period (time to reach 50% incidence) was on average 10 h shorter in virus-infected plants compared to non-infected plants. It is hypothesized that initial events such as conidial germination and fungal penetration into plant cells were facilitated by the presence of viral infection. Also, final GLS severity was significantly higher in the virus-infected plants. Mixed infections by ASGV/ASPV seemed to make apple leaves more susceptible to the initial infection and colonization by C. gloeosporioides.
Resumo:
2011
Resumo:
2011
Resumo:
2016
Resumo:
The continuous soybean-maize crop succession in the tropical region of Brazil has led to significant increases in the population size of root-knot (Meloidogyne incognita and M. javanica ) and root-lesion nematodes (Pratylenchus brachyurus), which make soils unsuitable for soybean cropping. A greenhouse study was conducted to identify sunflower genotypes adapted to the tropical region of Brazil and that are resistant to M. incognita, M. javanica and/or P. brachyurus . Two experiments for each nematode were conducted in a completely randomized design with six replicates. Gall index was calculated from visual scores (0?5) of gall intensity on roots for the root-knot nematode. Initial and final population density and reproduction factor were also measured for each nematode. Sunflower genotypes varied in resistance to the nematodes. Sunflower hybrids BRS 321 and BRS 323 were resistant to M. javanica and P. brachyurus and exhibited low gall index for M. incognita . The cultivars are good alternatives to using in the succession of soybean in nematode-infested areas of the tropical regions of Brazil. No sunflower genotype was identified as resistant to M. incognita and thus sunflower cropping is not indicated in areas infested with this nematode.
Resumo:
Networks are ubiquitous in natural, technological and social systems. They are of increasing relevance for improved understanding and control of infectious diseases of plants, animals and humans, given the interconnectedness of today's world. Recent modelling work on disease development in complex networks shows: the relative rapidity of pathogen spread in scale-free compared with random networks, unless there is high local clustering; the theoretical absence of an epidemic threshold in scale-free networks of infinite size, which implies that diseases with low infection rates can spread in them, but the emergence of a threshold when realistic features are added to networks (e.g. finite size, household structure or deactivation of links); and the influence on epidemic dynamics of asymmetrical interactions. Models suggest that control of pathogens spreading in scale-free networks should focus on highly connected individuals rather than on mass random immunization. A growing number of empirical applications of network theory in human medicine and animal disease ecology confirm the potential of the approach, and suggest that network thinking could also benefit plant epidemiology and forest pathology, particularly in human-modified pathosystems linked by commercial transport of plant and disease propagules. Potential consequences for the study and management of plant and tree diseases are discussed.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The effect of biodiversity on the ability of parasites to infect their host and cause disease (i.e. disease risk) is a major question in pathology, which is central to understand the emergence of infectious diseases, and to develop strategies for their management. Two hypotheses, which can be considered as extremes of a continuum, relate biodiversity to disease risk: One states that biodiversity is positively correlated with disease risk (Amplification Effect), and the second predicts a negative correlation between biodiversity and disease risk (Dilution Effect). Which of them applies better to different host-parasite systems is still a source of debate, due to limited experimental or empirical data. This is especially the case for viral diseases of plants. To address this subject, we have monitored for three years the prevalence of several viruses, and virus-associated symptoms, in populations of wild pepper (chiltepin) under different levels of human management. For each population, we also measured the habitat species diversity, host plant genetic diversity and host plant density. Results indicate that disease and infection risk increased with the level of human management, which was associated with decreased species diversity and host genetic diversity, and with increased host plant density. Importantly, species diversity of the habitat was the primary predictor of disease risk for wild chiltepin populations. This changed in managed populations where host genetic diversity was the primary predictor. Host density was generally a poorer predictor of disease and infection risk. These results support the dilution effect hypothesis, and underline the relevance of different ecological factors in determining disease/infection risk in host plant populations under different levels of anthropic influence. These results are relevant for managing plant diseases and for establishing conservation policies for endangered plant species.
Resumo:
23-29