767 resultados para Peer Leader Skills Development
Resumo:
This study is set in the context of disadvantaged urban primary schools in Ireland. It inquires into the collaborative practices of primary teachers exploring how class teachers and support teachers develop ways of working together in an effort to improve the literacy and numeracy levels of their student. Traditionally teachers have worked in isolation and therefore ‘collaboration’ as a practice has been slow to permeate the historically embedded assumption of how a teacher should work. This study aims to answer the following questions. 1). What are the dynamics of teacher collaboration in disadvantaged urban primary schools? 2). In what ways are teacher collaboration and teacher learning related? 3). In what ways does teacher collaboration influence students’ opportunities for learning? In answering these research questions, this study aims to contribute to the body of knowledge pertaining to teacher learning through collaboration. Though current policy and literature advocate and make a case for the development of collaborative teaching practices, key studies have identified gaps in the research literature in relation to the impact of teacher collaboration in schools. This study seeks to address some of those gaps by establishing how schools develop a collaborative environment and how teaching practices are enacted in such a setting. It seeks to determine what skills, relationships, structures and conditions are most important in developing collaborative environments that foster the development of professional learning communities (PLCs). This study uses a mixed method research design involving a postal survey, four snap-shot case studies and one in depth case study in an effort to establish if collaborative practice is a feasible practice resulting in worthwhile benefits for both teachers and students.
Resumo:
A computer model has been developed to optimize the performance of a 50kWp photovoltaic system which supplies electrical energy to a dairy farm at Fota Island in Cork Harbour. Optimization of the system involves maximising the efficiency and increasing the performance and reliability of each hardware unit. The model accepts horizontal insolation, ambient temperature, wind speed, wind direction and load demand as inputs. An optimization program uses the computer model to simulate the optimum operating conditions. From this analysis, criteria are established which are used to improve the photovoltaic system operation. This thesis describes the model concepts, the model implementation and the model verification procedures used during development. It also describes the techniques which are used during system optimization. The software, which is written in FORTRAN, is structured in modular units to provide logical and efficient programming. These modular units may also be used in the modelling and optimization of other photovoltaic systems.
Resumo:
Women's contribution to literature is no arbitrary or artificial distinction. However much the reformer may welcome, or the conservative lament, the growth of a harmonious sharing of ideals between men and women, that growth has been a hard-fought struggle. It has been an escape from a prison, which, when it did not entirely shut out the greater world, at least enclosed a little world of education meant for women, literature adapted to the supposed limitations of their intellect, and a course of action prescribed by the other sex. To show how the literary efforts of women developed and justified their claims to free activity is the purpose of this thesis.
The psychology of immersion and development of a quantitative measure of immersive response in games
Resumo:
This study sets out to investigate the psychology of immersion and the immersive response of individuals in relation to video and computer games. Initially, an exhaustive review of literature is presented, including research into games, player demographics, personality and identity. Play in traditional psychology is also reviewed, as well as previous research into immersion and attempts to define and measure this construct. An online qualitative study was carried out (N=38), and data was analysed using content analysis. A definition of immersion emerged, as well as a classification of two separate types of immersion, namely, vicarious immersion and visceral immersion. A survey study (N=217) verified the discrete nature of these categories and rejected the null hypothesis that there was no difference between individuals' interpretations of vicarious and visceral immersion. The primary aim of this research was to create a quantitative instrument which measures the immersive response as experienced by the player in a single game session. The IMX Questionnaire was developed using data from the initial qualitative study and quantitative survey. Exploratory Factor Analysis was carried out on data from 300 participants for the IMX Version 1, and Confirmatory Factor Analysis was conducted on data from 380 participants on the IMX Version 2. IMX Version 3 was developed from the results of these analyses. This questionnaire was found to have high internal consistency reliability and validity.
Resumo:
The use of optical sensor technology for non-invasive determination of key quality pack parameters improved package/product quality. This technology can be used for optimization of packaging processes, improvement of product shelf-life and maintenance of quality. In recent years, there has been a major focus on O2 and CO2 sensor development as these are key gases used in modified atmosphere packaging (MAP) of food. The first and second experimental chapters (chapter 2 and 3) describe the development of O2, pH and CO2 solid state sensors and its (potential) use for food packaging applications. A dual-analyte sensor for dissolved O2 and pH with one bi-functional reporter dye (meso-substituted Pd- or Ptporphyrin) embedded in plasticized PVC membrane was developed in chapter 2. The developed CO2 sensor in chapter 3 was comprised of a phosphorescent reporter dye Pt(II)- tetrakis(pentafluorophenyl) porphyrin (PtTFPP) and a colourimetric pH indicator α-naphtholphthalein (NP) incorporated in a plastic matrix together with a phase transfer agent tetraoctyl- or cetyltrimethylammonium hydroxide (TOA-OH or CTA-OH). The third experimental chapter, chapter 4, described the development of liquid O2 sensors for rapid microbiological determination which are important for improvement and assurance of food safety systems. This automated screening assay produced characteristic profiles with a sharp increase in fluorescence above the baseline level at a certain threshold time (TT) which can be correlated with their initial microbial load and was applied to various raw fish and horticultural samples. Chapter 5, the fourth experimental chapter, reported upon the successful application of developed O2 and CO2 sensors for quality assessment of MAP mushrooms during storage for 7 days at 4°C.
Resumo:
Growth/differentiation factor 5 (GDF5) and glial cell line-derived neurotrophic factor (GDNF) are neurotrophic factors that promote the survival of midbrain dopaminergic neurons in vitro and in vivo. Both factors have potent neurotrophic and neuroprotective effects in rat models of Parkinson's disease (PD), and may represent promising new therapies for PD. The aim of the present study was to investigate the endogenous expression and function of GDF5 and GDNF in the nigrostriatal dopaminergic system during development and in rat models of PD. Examination of the temporal expression patterns of endogenous GDF5, GDNF, and their respective receptors, in the developing and adult nigrostriatal dopaminergic system suggest that these factors play important roles in promoting the survival and maturation of midbrain dopaminergic neurons during the period of postnatal programmed cell death. The relative levels of GDF5 and GDNF mRNAs in the midbrain and striatum, and their individual temporal expression patterns during development, suggest that their modes of actions are quite distinct in vivo. Furthermore, the sustained expression of GDF5, GDNF, and their receptors into adulthood suggest roles for these factors in the continued support and maintenance of mature nigrostriatal dopaminergic neurons. The present study found that endogenous GDF5, GDNF, and their receptors are differentially expressed in two 6-hydroxydopamine-induced lesion adult rat models of PD. In both terminal and axonal lesion models of PD, GDF5 mRNA levels in the striatum increased at 10 days post-lesion, while GDNF mRNA levels in the nigrostriatal system decreased at 10 and 28 days post-lesion. Thus, despite the fact that exogenous GDF5 and GDNF have similar effects on midbrain dopaminergic neurons in vitro and in vivo, their endogenous responses to a neurotoxic injury are quite distinct. These results highlight the importance of studying the temporal dynamic changes in neurotrophic factor expression during development and in animal models of PD.
Resumo:
Silicon (Si) is the base material for electronic technologies and is emerging as a very attractive platform for photonic integrated circuits (PICs). PICs allow optical systems to be made more compact with higher performance than discrete optical components. Applications for PICs are in the area of fibre-optic communication, biomedical devices, photovoltaics and imaging. Germanium (Ge), due to its suitable bandgap for telecommunications and its compatibility with Si technology is preferred over III-V compounds as an integrated on-chip detector at near infrared wavelengths. There are two main approaches for Ge/Si integration: through epitaxial growth and through direct wafer bonding. The lattice mismatch of ~4.2% between Ge and Si is the main problem of the former technique which leads to a high density of dislocations while the bond strength and conductivity of the interface are the main challenges of the latter. Both result in trap states which are expected to play a critical role. Understanding the physics of the interface is a key contribution of this thesis. This thesis investigates Ge/Si diodes using these two methods. The effects of interface traps on the static and dynamic performance of Ge/Si avalanche photodetectors have been modelled for the first time. The thesis outlines the original process development and characterization of mesa diodes which were fabricated by transferring a ~700 nm thick layer of p-type Ge onto n-type Si using direct wafer bonding and layer exfoliation. The effects of low temperature annealing on the device performance and on the conductivity of the interface have been investigated. It is shown that the diode ideality factor and the series resistance of the device are reduced after annealing. The carrier transport mechanism is shown to be dominated by generation–recombination before annealing and by direct tunnelling in forward bias and band-to-band tunnelling in reverse bias after annealing. The thesis presents a novel technique to realise photodetectors where one of the substrates is thinned by chemical mechanical polishing (CMP) after bonding the Si-Ge wafers. Based on this technique, Ge/Si detectors with remarkably high responsivities, in excess of 3.5 A/W at 1.55 μm at −2 V, under surface normal illumination have been measured. By performing electrical and optical measurements at various temperatures, the carrier transport through the hetero-interface is analysed by monitoring the Ge band bending from which a detailed band structure of the Ge/Si interface is proposed for the first time. The above unity responsivity of the detectors was explained by light induced potential barrier lowering at the interface. To our knowledge this is the first report of light-gated responsivity for vertically illuminated Ge/Si photodiodes. The wafer bonding approach followed by layer exfoliation or by CMP is a low temperature wafer scale process. In principle, the technique could be extended to other materials such as Ge on GaAs, or Ge on SOI. The unique results reported here are compatible with surface normal illumination and are capable of being integrated with CMOS electronics and readout units in the form of 2D arrays of detectors. One potential future application is a low-cost Si process-compatible near infrared camera.
Resumo:
This work focuses on development of electrostatic supercapacitors (ESCs) using process routes compatible with complementary metal–oxide–semiconductor (CMOS) fabrication. Wafer-scale anodised aluminium oxide (AAO) processing techniques have been developed to produce high-surface area templates. Statistically optimised atomic layer deposition (ALD) processes have been developed to conformally coat the templates and generate metalinsulator-metal capacitor structures. Detailed electrical characterisation and analysis for a range of devices, revealed ESC’s with high capacitance densities of ~12 μF cm-2 and equivalent energy densities of 0.28 Wh/kg . Finally the suitability of ESC’s toward next generation energy storage applications is discussed.
Resumo:
The aim of this research, which focused on the Irish adult population, was to generate information for policymakers by applying statistical analyses and current technologies to oral health administrative and survey databases. Objectives included identifying socio-demographic influences on oral health and utilisation of dental services, comparing epidemiologically-estimated dental treatment need with treatment provided, and investigating the potential of a dental administrative database to provide information on utilisation of services and the volume and types of treatment provided over time. Information was extracted from the claims databases for the Dental Treatment Benefit Scheme (DTBS) for employed adults and the Dental Treatment Services Scheme (DTSS) for less-well-off adults, the National Surveys of Adult Oral Health, and the 2007 Survey of Lifestyle Attitudes and Nutrition in Ireland. Factors associated with utilisation and retention of natural teeth were analysed using count data models and logistic regression. The chi-square test and the student’s t-test were used to compare epidemiologically-estimated need in a representative sample of adults with treatment provided. Differences were found in dental care utilisation and tooth retention by Socio-Economic Status. An analysis of the five-year utilisation behaviour of a 2003 cohort of DTBS dental attendees revealed that age and being female were positively associated with visiting annually and number of treatments. Number of adults using the DTBS increased, and mean number of treatments per patient decreased, between 1997 and 2008. As a percentage of overall treatments, restorations, dentures, and extractions decreased, while prophylaxis increased. Differences were found between epidemiologically-estimated treatment need and treatment provided for those using the DTBS and DTSS. This research confirms the utility of survey and administrative data to generate knowledge for policymakers. Public administrative databases have not been designed for research purposes, but they have the potential to provide a wealth of knowledge on treatments provided and utilisation patterns.
Resumo:
The work in this thesis concerns the advanced development of polymeric membranes of two types; pervaporation and lateral-flow. The former produced from a solution casting method and the latter from a phase separation. All membranes were produced from casting lacquers. Early research centred on the development of viable membranes. This led to a supported polymer blend pervaporation membrane. Selective layer: plasticized 4:1 mass ratio sodium-alginate: poly(vinyl-alcohol) polymer blend. Using this membrane, pervaporation separation of ethanol/water mixtures was carefully monitored as a function of film thickness and time. Contrary to literature expectations, these films showed increased selectivity and decreased flux as film thickness was reduced. It is argued that morphology and structure of the polymer blend changes with thickness and that these changes define membrane efficiency. Mixed matrix membrane development was done using spherical, discreet, size-monodisperse mesoporous silica particles of 1.8 - 2μm diameter, with pore diameters of ~1.8 nm were incorporated into a poly(vinyl alcohol) [PVA] matrix. Inclusion of silica benefitted pervaporation performance for the dehydration of ethanol, improving flux and selectivity throughout in all but the highest silica content samples. Early lateral-flow membrane research produced a membrane from a basic lacquer composition required for phase inversion; polymer, solvent and non-solvent. Results showed that bringing lacquers to cloud point benefits both the pore structure and skin layers of the membranes. Advancement of this work showed that incorporation of ethanol as a mesosolvent into the lacquer effectively enhances membrane pore structure resulting in an improvement in lateral flow rates of the final membranes. This project details the formation mechanics of pervaporation and lateral-flow membranes and how these can be controlled. The principle methods of control can be applied to the formation of any other flat sheet polymer membranes, opening many avenues of future membrane research and industrial application.
Resumo:
Modern neuroscience relies heavily on sophisticated tools that allow us to visualize and manipulate cells with precise spatial and temporal control. Transgenic mouse models, for example, can be used to manipulate cellular activity in order to draw conclusions about the molecular events responsible for the development, maintenance and refinement of healthy and/or diseased neuronal circuits. Although it is fairly well established that circuits respond to activity-dependent competition between neurons, we have yet to understand either the mechanisms underlying these events or the higher-order plasticity that synchronizes entire circuits. In this thesis we aimed to develop and characterize transgenic mouse models that can be used to directly address these outstanding biological questions in different ways. We present SLICK-H, a Cre-expressing mouse line that can achieve drug-inducible, widespread, neuron-specific manipulations in vivo. This model is a clear improvement over existing models because of its particularly strong, widespread, and even distribution pattern that can be tightly controlled in the absence of drug induction. We also present SLICK-V::Ptox, a mouse line that, through expression of the tetanus toxin light chain, allows long-term inhibition of neurotransmission in a small subset (<1%) of fluorescently labeled pyramidal cells. This model, which can be used to study how a silenced cell performs in a wildtype environment, greatly facilitates the in vivo study of activity-dependent competition in the mammalian brain. As an initial application we used this model to show that tetanus toxin-expressing CA1 neurons experience a 15% - 19% decrease in apical dendritic spine density. Finally, we also describe the attempt to create additional Cre-driven mouse lines that would allow conditional alteration of neuronal activity either by hyperpolarization or inhibition of neurotransmission. Overall, the models characterized in this thesis expand upon the wealth of tools available that aim to dissect neuronal circuitry by genetically manipulating neurons in vivo.
Resumo:
Childhood asthma, allergic rhinitis and eczema are complex heterogenic chronic inflammatory allergic disorders which constitute a major burden to children, their families. The prevalence of childhood allergic disorders is increasing worldwide and merely rudimentary understanding exists regarding causality, or the influence of the environment on disease expression. Phase Three of the International Study of Asthma and Allergy in Childhood (ISAAC) reported that Irish adolescents had the 4th highest eczema and rhinoconjunctivitis prevalence and 3rd highest asthma prevalence in the world. There are no ISAAC data pertaining to young Irish children. In 2002, Sturley reported a high prevalence of current asthma in Cork primary school children aged 6-9 years. This thesis comprises of three cross-sectional studies which examined the prevalence of and associations with childhood allergy and a quasi-retrospective cohort study which observed the natural history of allergy from 6-9 until 11-13 years. Although not part of ISAAC, data was attained by parentally completed ISAAC-based questionnaires, using the ISAAC protocol. The prevalence, natural history and risk factors of childhood allergy in Ireland, as described in this thesis, echo those in worldwide allergy research. The variations of prevalence in different populations worldwide and the recurring themes of associations between childhood allergy and microbial exposures, from farming environments and/or gastrointestinal infections, as shown in this thesis, strengthen the mounting evidence that microbial exposure on GALT may hold the key to the mechanisms of allergy development. In this regard, probiotics may be an area of particular interest in allergy modification. Although their effects in relation to allergy, have been investigated now for several years, our knowledge of their diversity, complex functions and interactions with gut microflora, remain rudimentary. Birth cohort studies which include genomic and microbiomic research are recommended in order to examine the underlying mechanisms and the natural course of allergic diseases.
Resumo:
The measurement of users’ attitudes towards and confidence with using the Internet is an important yet poorly researched topic. Previous research has encountered issues that serve to obfuscate rather than clarify. Such issues include a lack of distinction between the terms ‘attitude’ and ‘self-efficacy’, the absence of a theoretical framework to measure each concept, and failure to follow well-established techniques for the measurement of both attitude and self-efficacy. Thus, the primary aim of this research was to develop two statistically reliable scales which independently measure attitudes towards the Internet and Internet self-efficacy. This research addressed the outlined issues by applying appropriate theoretical frameworks to each of the constructs under investigation. First, the well-known three component (affect, behaviour, cognition) model of attitudes was applied to previous Internet attitude statements. The scale was distributed to four large samples of participants. Exploratory factor analyses revealed four underlying factors in the scale: Internet Affect, Internet Exhilaration, Social Benefit of the Internet and Internet Detriment. The final scale contains 21 items, demonstrates excellent reliability and achieved excellent model fit in the confirmatory factor analysis. Second, Bandura’s (1997) model of self-efficacy was followed to develop a reliable measure of Internet self-efficacy. Data collected as part of this research suggests that there are ten main activities which individuals can carry out on the Internet. Preliminary analyses suggested that self-efficacy is confounded with previous experience; thus, individuals were invited to indicate how frequently they performed the listed Internet tasks in addition to rating their feelings of self-efficacy for each task. The scale was distributed to a sample of 841 participants. Results from the analyses suggest that the more frequently an individual performs an activity on the Internet, the higher their self-efficacy score for that activity. This suggests that frequency of use ought to be taken into account in individual’s self-efficacy scores to obtain a ‘true’ self-efficacy score for the individual. Thus, a formula was devised to incorporate participants’ previous experience of Internet tasks in their Internet self-efficacy scores. This formula was then used to obtain an overall Internet self-efficacy score for participants. Following the development of both scales, gender and age differences were explored in Internet attitudes and Internet self-efficacy scores. The analyses indicated that there were no gender differences between groups for Internet attitude or Internet self-efficacy scores. However, age group differences were identified for both attitudes and self-efficacy. Individuals aged 25-34 years achieved the highest scores on both the Internet attitude and Internet self-efficacy measures. Internet attitude and self-efficacy scores tended to decrease with age with older participants achieving lower scores on both measures than younger participants. It was also found that the more exposure individuals had to the Internet, the higher their Internet attitude and Internet self-efficacy scores. Examination of the relationship between attitude and self-efficacy found a significantly positive relationship between the two measures suggesting that the two constructs are related. Implication of such findings and directions for future research are outlined in detail in the Discussion section of this thesis.
Resumo:
Starches are a source of digestible carbohydrate and are frequently used in formulated food products in the presence of other carbohydrates, proteins and fat. This thesis explored the effect of addition of neutral (Konjac glucomannan) or charged (milk proteins) polymers on the physical characteristics and digestion kinetics of waxy maize starch. The aim was to identify mechanisms to modulate the pasting properties and subsequent susceptibility to amylolytic digestion. Addition of αs- or β-caseinate protein fractions to waxy maize starch restricted granular swelling during gelatinisation, increasing granule integrity. It was shown that, while β-caseinate can adsorb to starch granules during pasting, αscaseinate can be absorbed into maize starch granules. The resultant effect was a reduction in granule size after heating, more intact granules and a subsequent decrease in starch digestion in vitro as determined by analysis of reducing sugars. The ability of αs-caseinate to reduce the level of amylolytic digestion was confirmed through in vivo pig (Teagasc, Moorepark) and human (University of Surrey, UK) trials. The scope of the thesis extended to the development of a new automated cell for attachment to a rheometer to measure digestion kinetics of starch-protein mixtures. In conclusion, the thesis offers new approaches to modulation of the physical characteristics of unmodified starch during gelatinisation and suggests that the type of protein and/or polysaccharide used in starch-based food systems may influence the ability of the food to modulate glycemia. This is an important consideration in the design of foods with positive health benefits.
Resumo:
PTEN‐induced kinase 1 (PINK1) was identified initially in cancer cells as a gene up‐regulated by overexpression of the central tumour suppressor, PTEN. Loss‐of‐function mutations in PINK1 were discovered subsequently to cause autosomal recessive Parkinsonʹs disease (ARPD). Despite much research focusing on the proposed mechanism(s) through which loss of PINKI function causes neurodegeneration, few studies have focused on a direct role for this serine/threonine kinase in cancer biology. The focus of this thesis was to examine a direct role for PINK1 function in tumourigenesis. Initial studies showed that loss of PINK1 reduces tumour‐associated phenotypes including cell growth, colony formation and invasiveness, in several cell types in vitro, indicating a pro‐tumourigenic role for PINK1 in cancer. Furthermore, results revealed for the first time that PINK1 deletion, examined in mouse embryonic fibroblasts (MEFS) from PINK1 knock‐out animals, causes cell cycle defects, whereby cells arrest at in cytokinesis, giving rise to a highly significant increase in the number of multinucleated cells. This results in several key changes in the expression profile of cell cycle associated protein. In addition, PINK1‐deficient MEFs were found to resist cell cycle exit, with a proportion of cells remaining in proliferative phases upon removal of serum. The ability of cells to progress through mitosis conferred by PINK1 expression was independent of its kinase activity, while the cell cycle exit following serum withdrawal was kinase dependent. Investigations into the mechanism through which loss of PINK1 function gives rise to cell cycle defects revealed that dynamin related protein 1 (Drp1)‐mediated mitochondrial fission is enhanced in PINK1‐ deficient MEFs, and that increased expression of Drp1 on mitochondria and activation of Drp1 is highly significant in PINK1‐deficient multinucleated cells. Deregulated and increased levels and activation of mitochondrial fission via Drp1 was shown to be a major feature of cell cycle defects caused by PINK1 deletion, both during progression through G2/M and cell cycle exit following serum removal. Altered PINK1 localisation was also observed during progression of mitosis, and upon serum deprivation. Thus, PINK1 dissociated from the mitochondria during the mitotic phases and localised to mitochondria upon serum withdrawal. During serum withdrawal deletion of PINK1 disabled the ability of MEFs to increase mitochondrial membrane potential (ΔΨm), and increase autophagy. This was co‐incident with increased mitochondrial fission, and increased localisation of Drp1 to mitochondria following serum deprivation. Together, this indicates an inability of PINK1‐negative cells to respond protectively to this stress‐induced state, primarily via impaired mitochondrial function. In contrast, PINK1 overexpression was found to protect cells from DNA damage following treatment with oxidants. In addition, deletion of PINK1 blocked the ability of cells to re‐enter the cell cycle in response to insulin‐like growth factor‐1 (IGF‐1), a major cancer promoting agonistwhich acts primarily via PI3‐kinase/Akt activation. Furthermore, PINK1 mRNA expression was significantly increased following serum deprivation of MCF‐7 cells, and this was rendered more significant upon additional inhibition of PI3‐kinase. Conversely, IGF‐1 activation of PI3‐kinase/Akt causes a time‐dependent and significant reduction of PINK1 mRNA expression that was PI3‐kinase dependent. Together these results indicate that PINK1 expression is necessary for IGF‐1 signalling and is regulated reciprocally in the absence and presence of IGF‐1, via PI3‐kinase/Akt, a signalling system which has major tumour‐promoting capacity in cancer cell biology. The results of this thesis indicate PINK1 is a candidate tumour-promoting gene which has a significant function in the regulation of the cell cycle, and growth factor responses, at key cell cycle checkpoints, namely, during progression through G2/M and during exit of the cell cycle following removal of serum. Furthermore, the results reveal that the regulation of mitochondrial fission and Drp1 function is mechanistically important in the regulation of cell cycle control by PINK1. As deregulation of the cell cycle is linked to both tumourigenesis and neurodegeneration, the findings of this thesis are of importance not just for understanding cancer biology, but also in the context of PINK1‐associated neurodegeneration.