872 resultados para Nutritional geometry
Resumo:
Compositional data analysis motivated the introduction of a complete Euclidean structure in the simplex of D parts. This was based on the early work of J. Aitchison (1986) and completed recently when Aitchinson distance in the simplex was associated with an inner product and orthonormal bases were identified (Aitchison and others, 2002; Egozcue and others, 2003). A partition of the support of a random variable generates a composition by assigning the probability of each interval to a part of the composition. One can imagine that the partition can be refined and the probability density would represent a kind of continuous composition of probabilities in a simplex of infinitely many parts. This intuitive idea would lead to a Hilbert-space of probability densities by generalizing the Aitchison geometry for compositions in the simplex into the set probability densities
Resumo:
The Aitchison vector space structure for the simplex is generalized to a Hilbert space structure A2(P) for distributions and likelihoods on arbitrary spaces. Central notations of statistics, such as Information or Likelihood, can be identified in the algebraical structure of A2(P) and their corresponding notions in compositional data analysis, such as Aitchison distance or centered log ratio transform. In this way very elaborated aspects of mathematical statistics can be understood easily in the light of a simple vector space structure and of compositional data analysis. E.g. combination of statistical information such as Bayesian updating, combination of likelihood and robust M-estimation functions are simple additions/ perturbations in A2(Pprior). Weighting observations corresponds to a weighted addition of the corresponding evidence. Likelihood based statistics for general exponential families turns out to have a particularly easy interpretation in terms of A2(P). Regular exponential families form finite dimensional linear subspaces of A2(P) and they correspond to finite dimensional subspaces formed by their posterior in the dual information space A2(Pprior). The Aitchison norm can identified with mean Fisher information. The closing constant itself is identified with a generalization of the cummulant function and shown to be Kullback Leiblers directed information. Fisher information is the local geometry of the manifold induced by the A2(P) derivative of the Kullback Leibler information and the space A2(P) can therefore be seen as the tangential geometry of statistical inference at the distribution P. The discussion of A2(P) valued random variables, such as estimation functions or likelihoods, give a further interpretation of Fisher information as the expected squared norm of evidence and a scale free understanding of unbiased reasoning
Resumo:
A novel metric comparison of the appendicular skeleton (fore and hind limb) of different vertebrates using the Compositional Data Analysis (CDA) methodological approach it’s presented. 355 specimens belonging in various taxa of Dinosauria (Sauropodomorpha, Theropoda, Ornithischia and Aves) and Mammalia (Prothotheria, Metatheria and Eutheria) were analyzed with CDA. A special focus has been put on Sauropodomorpha dinosaurs and the Aitchinson distance has been used as a measure of disparity in limb elements proportions to infer some aspects of functional morphology
Resumo:
Exercises, exam questions and solutions for a fourth year hyperbolic geometry course. Diagrams for the questions are all together in the support.zip file, as .eps files
Resumo:
Recurso para la evaluación de la enseñanza y el aprendizaje de la geometría en la enseñanza secundaria desde la perspectiva de los nuevos docentes y de los que tienen más experiencia. Está diseñado para ampliar y profundizar el conocimiento de la materia y ofrecer consejos prácticos e ideas para el aula en el contexto de la práctica y la investigación actual. Hace especial hincapié en: comprender las ideas fundamentales del currículo de geometría; el aprendizaje de la geometría de manera efectiva; la investigación y la práctica actual; las ideas erróneas y los errores; el razonamiento de la geometría; la solución de problemas; el papel de la tecnología en el aprendizaje de la geometría.
Resumo:
Resumen basado en el de la publicación
Resumo:
Resumen basado en el de la publicación
Resumo:
To identify and describe the sociodemographic and nutritional characteristics associated with neurobehavioral development among young children living in three communities in the northeastern Andean region of Cayambe-Tabacundo, Ecuador. Women in the study communities who had a child 3 to 61 months of age completed a questionnaire about maternal and child health and sociodemographic characteristics. The Ages and Stages Questionnaire (ASQ) was directly administered to 283 children by two trained interviewers. Growth measurements and a hemoglobin finger-prick blood test were obtained in 2003–2004. Prevalence of developmental delay was calculated, and associations between child development and maternal, child, and household characteristics were explored. High frequencies of developmental delay were observed. Children 3 to 23 months old displayed delay in gross motor skills (30.1%), and children 48 to 61 months old displayed delay in problem-solving skills (73.4%) and fine motor skills (28.1%). A high frequency of both anemia (60.4%) and stunting (53.4%) was observed for all age groups. Maternal educational level was positively associated with communication and problem-solving skills, and monthly household income was positively associated with communication, gross motor, and problem-solving skills. The results suggest a high prevalence of developmental delay and poor child health in this population. Child health status and the child’s environment may contribute to developmental delay in this region of Ecuador, but sociodemographic factors affecting opportunities for stimulation may also play a role. Research is needed to identify what is causing high percentages of neurobehavioral developmental delay in this region of Ecuador.
Resumo:
A number of recent experiments suggest that, at a given wetting speed, the dynamic contact angle formed by an advancing liquid-gas interface with a solid substrate depends on the flow field and geometry near the moving contact line. In the present work, this effect is investigated in the framework of an earlier developed theory that was based on the fact that dynamic wetting is, by its very name, a process of formation of a new liquid-solid interface (newly “wetted” solid surface) and hence should be considered not as a singular problem but as a particular case from a general class of flows with forming or/and disappearing interfaces. The results demonstrate that, in the flow configuration of curtain coating, where a liquid sheet (“curtain”) impinges onto a moving solid substrate, the actual dynamic contact angle indeed depends not only on the wetting speed and material constants of the contacting media, as in the so-called slip models, but also on the inlet velocity of the curtain, its height, and the angle between the falling curtain and the solid surface. In other words, for the same wetting speed the dynamic contact angle can be varied by manipulating the flow field and geometry near the moving contact line. The obtained results have important experimental implications: given that the dynamic contact angle is determined by the values of the surface tensions at the contact line and hence depends on the distributions of the surface parameters along the interfaces, which can be influenced by the flow field, one can use the overall flow conditions and the contact angle as a macroscopic multiparametric signal-response pair that probes the dynamics of the liquid-solid interface. This approach would allow one to investigate experimentally such properties of the interface as, for example, its equation of state and the rheological properties involved in the interface’s response to an external torque, and would help to measure its parameters, such as the coefficient of sliding friction, the surface-tension relaxation time, and so on.