957 resultados para Numerical method


Relevância:

30.00% 30.00%

Publicador:

Resumo:

In various imaging problems the task is to use the Cauchy data of the solutions to an elliptic boundary value problem to reconstruct the coefficients of the corresponding partial differential equation. Often the examined object has known background properties but is contaminated by inhomogeneities that cause perturbations of the coefficient functions. The factorization method of Kirsch provides a tool for locating such inclusions. In this paper, the factorization technique is studied in the framework of coercive elliptic partial differential equations of the divergence type: Earlier it has been demonstrated that the factorization algorithm can reconstruct the support of a strictly positive (or negative) definite perturbation of the leading order coefficient, or if that remains unperturbed, the support of a strictly positive (or negative) perturbation of the zeroth order coefficient. In this work we show that these two types of inhomogeneities can, in fact, be located simultaneously. Unlike in the earlier articles on the factorization method, our inclusions may have disconnected complements and we also weaken some other a priori assumptions of the method. Our theoretical findings are complemented by two-dimensional numerical experiments that are presented in the framework of the diffusion approximation of optical tomography.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In electrical impedance tomography, one tries to recover the conductivity inside a physical body from boundary measurements of current and voltage. In many practically important situations, the investigated object has known background conductivity but it is contaminated by inhomogeneities. The factorization method of Andreas Kirsch provides a tool for locating such inclusions. Earlier, it has been shown that under suitable regularity conditions positive (or negative) inhomogeneities can be characterized by the factorization technique if the conductivity or one of its higher normal derivatives jumps on the boundaries of the inclusions. In this work, we use a monotonicity argument to generalize these results: We show that the factorization method provides a characterization of an open inclusion (modulo its boundary) if each point inside the inhomogeneity has an open neighbourhood where the perturbation of the conductivity is strictly positive (or negative) definite. In particular, we do not assume any regularity of the inclusion boundary or set any conditions on the behaviour of the perturbed conductivity at the inclusion boundary. Our theoretical findings are verified by two-dimensional numerical experiments.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

DI Diesel engine are widely used both for industrial and automotive applications due to their durability and fuel economy. Nonetheless, increasing environmental concerns force that type of engine to comply with increasingly demanding emission limits, so that, it has become mandatory to develop a robust design methodology of the DI Diesel combustion system focused on reduction of soot and NOx simultaneously while maintaining a reasonable fuel economy. In recent years, genetic algorithms and CFD three-dimensional combustion simulations have been successfully applied to that kind of problem. However, combining GAs optimization with actual CFD three-dimensional combustion simulations can be too onerous since a large number of calculations is usually needed for the genetic algorithm to converge, resulting in a high computational cost and, thus, limiting the suitability of this method for industrial processes. In order to make the optimization process less time-consuming, CFD simulations can be more conveniently used to generate a training set for the learning process of an artificial neural network which, once correctly trained, can be used to forecast the engine outputs as a function of the design parameters during a GA optimization performing a so-called virtual optimization. In the current work, a numerical methodology for the multi-objective virtual optimization of the combustion of an automotive DI Diesel engine, which relies on artificial neural networks and genetic algorithms, was developed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Over the years the Differential Quadrature (DQ) method has distinguished because of its high accuracy, straightforward implementation and general ap- plication to a variety of problems. There has been an increase in this topic by several researchers who experienced significant development in the last years. DQ is essentially a generalization of the popular Gaussian Quadrature (GQ) used for numerical integration functions. GQ approximates a finite in- tegral as a weighted sum of integrand values at selected points in a problem domain whereas DQ approximate the derivatives of a smooth function at a point as a weighted sum of function values at selected nodes. A direct appli- cation of this elegant methodology is to solve ordinary and partial differential equations. Furthermore in recent years the DQ formulation has been gener- alized in the weighting coefficients computations to let the approach to be more flexible and accurate. As a result it has been indicated as Generalized Differential Quadrature (GDQ) method. However the applicability of GDQ in its original form is still limited. It has been proven to fail for problems with strong material discontinuities as well as problems involving singularities and irregularities. On the other hand the very well-known Finite Element (FE) method could overcome these issues because it subdivides the computational domain into a certain number of elements in which the solution is calculated. Recently, some researchers have been studying a numerical technique which could use the advantages of the GDQ method and the advantages of FE method. This methodology has got different names among each research group, it will be indicated here as Generalized Differential Quadrature Finite Element Method (GDQFEM).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The use of guided ultrasonic waves (GUW) has increased considerably in the fields of non-destructive (NDE) testing and structural health monitoring (SHM) due to their ability to perform long range inspections, to probe hidden areas as well as to provide a complete monitoring of the entire waveguide. Guided waves can be fully exploited only once their dispersive properties are known for the given waveguide. In this context, well stated analytical and numerical methods are represented by the Matrix family methods and the Semi Analytical Finite Element (SAFE) methods. However, while the former are limited to simple geometries of finite or infinite extent, the latter can model arbitrary cross-section waveguides of finite domain only. This thesis is aimed at developing three different numerical methods for modelling wave propagation in complex translational invariant systems. First, a classical SAFE formulation for viscoelastic waveguides is extended to account for a three dimensional translational invariant static prestress state. The effect of prestress, residual stress and applied loads on the dispersion properties of the guided waves is shown. Next, a two-and-a-half Boundary Element Method (2.5D BEM) for the dispersion analysis of damped guided waves in waveguides and cavities of arbitrary cross-section is proposed. The attenuation dispersive spectrum due to material damping and geometrical spreading of cavities with arbitrary shape is shown for the first time. Finally, a coupled SAFE-2.5D BEM framework is developed to study the dispersion characteristics of waves in viscoelastic waveguides of arbitrary geometry embedded in infinite solid or liquid media. Dispersion of leaky and non-leaky guided waves in terms of speed and attenuation, as well as the radiated wavefields, can be computed. The results obtained in this thesis can be helpful for the design of both actuation and sensing systems in practical application, as well as to tune experimental setup.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Im Rahmen dieser Arbeit wurden Computersimulationen von Keimbildungs- und Kris\-tallisationsprozessen in rnkolloidalen Systemen durchgef\"uhrt. rnEine Kombination von Monte-Carlo-Simulationsmethoden und der Forward-Flux-Sampling-Technik wurde rnimplementiert, um die homogene und heterogene Nukleation von Kristallen monodisperser Hart\-kugeln zu untersuchen. rnIm m\"a\ss{ig} unterk\"uhlten Bulk-Hartkugelsystem sagen wir die homogenen Nukleationsraten voraus und rnvergleichen die Resultate mit anderen theoretischen Ergebnissen und experimentellen Daten. rnWeiterhin analysieren wir die kristallinen Cluster in den Keimbildungs- und Wachstumszonen, rnwobei sich herausstellt, dass kristalline Cluster sich in unterschiedlichen Formen im System bilden. rnKleine Cluster sind eher l\"anglich in eine beliebige Richtung ausgedehnt, w\"ahrend gr\"o\ss{ere} rnCluster kompakter und von ellipsoidaler Gestalt sind. rn rnIm n\"achsten Teil untersuchen wir die heterogene Keimbildung an strukturierten bcc (100)-W\"anden. rnDie 2d-Analyse der kristallinen Schichten an der Wand zeigt, dass die Struktur der rnWand eine entscheidende Rolle in der Kristallisation von Hartkugelkolloiden spielt. rnWir sagen zudem die heterogenen Kristallbildungsraten bei verschiedenen \"Ubers\"attigungsgraden voraus. rnDurch Analyse der gr\"o\ss{ten} Cluster an der Wand sch\"atzen wir zus\"atzlich den Kontaktwinkel rnzwischen Kristallcluster und Wand ab. rnEs stellt sich heraus, dass wir in solchen Systemen weit von der Benetzungsregion rnentfernt sind und der Kristallisationsprozess durch heterogene Nukleation stattfindet. rn rnIm letzten Teil der Arbeit betrachten wir die Kristallisation von Lennard-Jones-Kolloidsystemen rnzwischen zwei ebenen W\"anden. rnUm die Erstarrungsprozesse f\"ur ein solches System zu untersuchen, haben wir eine Analyse des rnOrdnungsparameters f\"ur die Bindung-Ausrichtung in den Schichten durchgef\"urt. rnDie Ergebnisse zeigen, dass innerhalb einer Schicht keine hexatische Ordnung besteht, rnwelche auf einen Kosterlitz-Thouless-Schmelzvorgang hinweisen w\"urde. rnDie Hysterese in den Erhitzungs-Gefrier\-kurven zeigt dar\"uber hinaus, dass der Kristallisationsprozess rneinen aktivierten Prozess darstellt.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The interplay of hydrodynamic and electrostatic forces is of great importance for the understanding of colloidal dispersions. Theoretical descriptions are often based on the so called standard electrokinetic model. This Mean Field approach combines the Stokes equation for the hydrodynamic flow field, the Poisson equation for electrostatics and a continuity equation describing the evolution of the ion concentration fields. In the first part of this thesis a new lattice method is presented in order to efficiently solve the set of non-linear equations for a charge-stabilized colloidal dispersion in the presence of an external electric field. Within this framework, the research is mainly focused on the calculation of the electrophoretic mobility. Since this transport coefficient is independent of the electric field only for small driving, the algorithm is based upon a linearization of the governing equations. The zeroth order is the well known Poisson-Boltzmann theory and the first order is a coupled set of linear equations. Furthermore, this set of equations is divided into several subproblems. A specialized solver for each subproblem is developed, and various tests and applications are discussed for every particular method. Finally, all solvers are combined in an iterative procedure and applied to several interesting questions, for example, the effect of the screening mechanism on the electrophoretic mobility or the charge dependence of the field-induced dipole moment and ion clouds surrounding a weakly charged sphere. In the second part a quantitative data analysis method is developed for a new experimental approach, known as "Total Internal Reflection Fluorescence Cross-Correlation Spectroscopy" (TIR-FCCS). The TIR-FCCS setup is an optical method using fluorescent colloidal particles to analyze the flow field close to a solid-fluid interface. The interpretation of the experimental results requires a theoretical model, which is usually the solution of a convection-diffusion equation. Since an analytic solution is not available due to the form of the flow field and the boundary conditions, an alternative numerical approach is presented. It is based on stochastic methods, i. e. a combination of a Brownian Dynamics algorithm and Monte Carlo techniques. Finally, experimental measurements for a hydrophilic surface are analyzed using this new numerical approach.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In dieser Arbeit stelle ich Aspekte zu QCD Berechnungen vor, welche eng verknüpft sind mit der numerischen Auswertung von NLO QCD Amplituden, speziell der entsprechenden Einschleifenbeiträge, und der effizienten Berechnung von damit verbundenen Beschleunigerobservablen. Zwei Themen haben sich in der vorliegenden Arbeit dabei herauskristallisiert, welche den Hauptteil der Arbeit konstituieren. Ein großer Teil konzentriert sich dabei auf das gruppentheoretische Verhalten von Einschleifenamplituden in QCD, um einen Weg zu finden die assoziierten Farbfreiheitsgrade korrekt und effizient zu behandeln. Zu diesem Zweck wird eine neue Herangehensweise eingeführt welche benutzt werden kann, um farbgeordnete Einschleifenpartialamplituden mit mehreren Quark-Antiquark Paaren durch Shufflesummation über zyklisch geordnete primitive Einschleifenamplituden auszudrücken. Ein zweiter großer Teil konzentriert sich auf die lokale Subtraktion von zu Divergenzen führenden Poltermen in primitiven Einschleifenamplituden. Hierbei wurde im Speziellen eine Methode entwickelt, um die primitiven Einchleifenamplituden lokal zu renormieren, welche lokale UV Counterterme und effiziente rekursive Routinen benutzt. Zusammen mit geeigneten lokalen soften und kollinearen Subtraktionstermen wird die Subtraktionsmethode dadurch auf den virtuellen Teil in der Berechnung von NLO Observablen erweitert, was die voll numerische Auswertung der Einschleifenintegrale in den virtuellen Beiträgen der NLO Observablen ermöglicht. Die Methode wurde schließlich erfolgreich auf die Berechnung von NLO Jetraten in Elektron-Positron Annihilation im farbführenden Limes angewandt.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coarse graining is a popular technique used in physics to speed up the computer simulation of molecular fluids. An essential part of this technique is a method that solves the inverse problem of determining the interaction potential or its parameters from the given structural data. Due to discrepancies between model and reality, the potential is not unique, such that stability of such method and its convergence to a meaningful solution are issues.rnrnIn this work, we investigate empirically whether coarse graining can be improved by applying the theory of inverse problems from applied mathematics. In particular, we use the singular value analysis to reveal the weak interaction parameters, that have a negligible influence on the structure of the fluid and which cause non-uniqueness of the solution. Further, we apply a regularizing Levenberg-Marquardt method, which is stable against the mentioned discrepancies. Then, we compare it to the existing physical methods - the Iterative Boltzmann Inversion and the Inverse Monte Carlo method, which are fast and well adapted to the problem, but sometimes have convergence problems.rnrnFrom analysis of the Iterative Boltzmann Inversion, we elaborate a meaningful approximation of the structure and use it to derive a modification of the Levenberg-Marquardt method. We engage the latter for reconstruction of the interaction parameters from experimental data for liquid argon and nitrogen. We show that the modified method is stable, convergent and fast. Further, the singular value analysis of the structure and its approximation allows to determine the crucial interaction parameters, that is, to simplify the modeling of interactions. Therefore, our results build a rigorous bridge between the inverse problem from physics and the powerful solution tools from mathematics. rn

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Scilla rock avalanche occurred on 6 February 1783 along the coast of the Calabria region (southern Italy), close to the Messina Strait. It was triggered by a mainshock of the Terremoto delle Calabrie seismic sequence, and it induced a tsunami wave responsible for more than 1500 casualties along the neighboring Marina Grande beach. The main goal of this work is the application of semi-analtycal and numerical models to simulate this event. The first one is a MATLAB code expressly created for this work that solves the equations of motion for sliding particles on a two-dimensional surface through a fourth-order Runge-Kutta method. The second one is a code developed by the Tsunami Research Team of the Department of Physics and Astronomy (DIFA) of the Bologna University that describes a slide as a chain of blocks able to interact while sliding down over a slope and adopts a Lagrangian point of view. A wide description of landslide phenomena and in particular of landslides induced by earthquakes and with tsunamigenic potential is proposed in the first part of the work. Subsequently, the physical and mathematical background is presented; in particular, a detailed study on derivatives discratization is provided. Later on, a description of the dynamics of a point-mass sliding on a surface is proposed together with several applications of numerical and analytical models over ideal topographies. In the last part, the dynamics of points sliding on a surface and interacting with each other is proposed. Similarly, different application on an ideal topography are shown. Finally, the applications on the 1783 Scilla event are shown and discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recent studies found that soil-atmosphere coupling features, through soil moisture, have been crucial to simulate well heat waves amplitude, duration and intensity. Moreover, it was found that soil moisture depletion both in Winter and Spring anticipates strong heat waves during the Summer. Irrigation in geophysical studies can be intended as an anthropogenic forcing to the soil-moisture, besides changes in land proprieties. In this study, the irrigation was add to a LAM hydrostatic model (BOLAM) and coupled with the soil. The response of the model to irrigation perturbation is analyzed during a dry Summer season. To identify a dry Summer, with overall positive temperature anomalies, an extensive climatological characterization of 2015 was done. The method included a statistical validation on the reference period distribution used to calculate the anomalies. Drought conditions were observed during Summer 2015 and previous seasons, both on the analyzed region and the Alps. Moreover July was characterized as an extreme event for the referred distribution. The numerical simulation consisted on the summer season of 2015 and two run: a control run (CTR), with the soil coupling and a perturbed run (IPR). The perturbation consists on a mask of land use created from the Cropland FAO dataset, where an irrigation water flux of 3 mm/day was applied from 6 A.M. to 9 A.M. every day. The results show that differences between CTR and IPR has a strong daily cycle. The main modifications are on the air masses proprieties, not on to the dynamics. However, changes in the circulation at the boundaries of the Po Valley are observed, and a diagnostic spatial correlation of variable differences shows that soil moisture perturbation explains well the variation observed in the 2 meters height temperature and in the latent heat fluxes.On the other hand, does not explain the spatial shift up and downslope observed during different periods of the day. Given the results, irrigation process affects the atmospheric proprieties on a larger scale than the irrigation, therefore it is important in daily forecast, particularly during hot and dry periods.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We derive a new class of iterative schemes for accelerating the convergence of the EM algorithm, by exploiting the connection between fixed point iterations and extrapolation methods. First, we present a general formulation of one-step iterative schemes, which are obtained by cycling with the extrapolation methods. We, then square the one-step schemes to obtain the new class of methods, which we call SQUAREM. Squaring a one-step iterative scheme is simply applying it twice within each cycle of the extrapolation method. Here we focus on the first order or rank-one extrapolation methods for two reasons, (1) simplicity, and (2) computational efficiency. In particular, we study two first order extrapolation methods, the reduced rank extrapolation (RRE1) and minimal polynomial extrapolation (MPE1). The convergence of the new schemes, both one-step and squared, is non-monotonic with respect to the residual norm. The first order one-step and SQUAREM schemes are linearly convergent, like the EM algorithm but they have a faster rate of convergence. We demonstrate, through five different examples, the effectiveness of the first order SQUAREM schemes, SqRRE1 and SqMPE1, in accelerating the EM algorithm. The SQUAREM schemes are also shown to be vastly superior to their one-step counterparts, RRE1 and MPE1, in terms of computational efficiency. The proposed extrapolation schemes can fail due to the numerical problems of stagnation and near breakdown. We have developed a new hybrid iterative scheme that combines the RRE1 and MPE1 schemes in such a manner that it overcomes both stagnation and near breakdown. The squared first order hybrid scheme, SqHyb1, emerges as the iterative scheme of choice based on our numerical experiments. It combines the fast convergence of the SqMPE1, while avoiding near breakdowns, with the stability of SqRRE1, while avoiding stagnations. The SQUAREM methods can be incorporated very easily into an existing EM algorithm. They only require the basic EM step for their implementation and do not require any other auxiliary quantities such as the complete data log likelihood, and its gradient or hessian. They are an attractive option in problems with a very large number of parameters, and in problems where the statistical model is complex, the EM algorithm is slow and each EM step is computationally demanding.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Visualization and exploratory analysis is an important part of any data analysis and is made more challenging when the data are voluminous and high-dimensional. One such example is environmental monitoring data, which are often collected over time and at multiple locations, resulting in a geographically indexed multivariate time series. Financial data, although not necessarily containing a geographic component, present another source of high-volume multivariate time series data. We present the mvtsplot function which provides a method for visualizing multivariate time series data. We outline the basic design concepts and provide some examples of its usage by applying it to a database of ambient air pollution measurements in the United States and to a hypothetical portfolio of stocks.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This technical report discusses the application of the Lattice Boltzmann Method (LBM) and Cellular Automata (CA) simulation in fluid flow and particle deposition. The current work focuses on incompressible flow simulation passing cylinders, in which we incorporate the LBM D2Q9 and CA techniques to simulate the fluid flow and particle loading respectively. For the LBM part, the theories of boundary conditions are studied and verified using the Poiseuille flow test. For the CA part, several models regarding simulation of particles are explained. And a new Digital Differential Analyzer (DDA) algorithm is introduced to simulate particle motion in the Boolean model. The numerical results are compared with a previous probability velocity model by Masselot [Masselot 2000], which shows a satisfactory result.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

1 Natural soil profiles may be interpreted as an arrangement of parts which are characterized by properties like hydraulic conductivity and water retention function. These parts form a complicated structure. Characterizing the soil structure is fundamental in subsurface hydrology because it has a crucial influence on flow and transport and defines the patterns of many ecological processes. We applied an image analysis method for recognition and classification of visual soil attributes in order to model flow and transport through a man-made soil profile. Modeled and measured saturation-dependent effective parameters were compared. We found that characterizing and describing conductivity patterns in soils with sharp conductivity contrasts is feasible. Differently, solving flow and transport on the basis of these conductivity maps is difficult and, in general, requires special care for representation of small-scale processes.