917 resultados para Numerical Algorithms and Problems
Resumo:
Train scheduling is a complex and time consuming task of vital importance. To schedule trains more accurately and efficiently than permitted by current techniques a novel hybrid job shop approach has been proposed and implemented. Unique characteristics of train scheduling are first incorporated into a disjunctive graph model of train operations. A constructive algorithm that utilises this model is then developed. The constructive algorithm is a general procedure that constructs a schedule using insertion, backtracking and dynamic route selection mechanisms. It provides a significant search capability and is valid for any objective criteria. Simulated Annealing and Local Search meta-heuristic improvement algorithms are also adapted and extended. An important feature of these approaches is a new compound perturbation operator that consists of many unitary moves that allows trains to be shifted feasibly and more easily within the solution. A numerical investigation and case study is provided and demonstrates that high quality solutions are obtainable on real sized applications.
Resumo:
A deconvolution method that combines nanoindentation and finite element analysis was developed to determine elastic modulus of thin coating layer in a coating-substrate bilayer system. In this method, the nanoindentation experiments were conducted to obtain the modulus of both the bilayer system and the substrate. The finite element analysis was then applied to deconvolve the elastic modulus of the coating. The results demonstrated that the elastic modulus obtained using the developed method was in good agreement with that reported in literature.
Resumo:
Fire design is an essential element of the overall design procedure of structural steel members and systems. Conventionally the fire rating of load-bearing stud wall systems made of light gauge steel frames (LSF) is based on approximate prescriptive methods developed on the basis of limited fire tests. This design is limited to standard wall configurations used by the industry. Increased fire rating is provided simply by adding more plasterboards to the stud walls. This is not an acceptable situation as it not only inhibits innovation and structural and cost efficiencies but also casts doubt over the fire safety of these light gauge steel stud wall systems. Hence a detailed fire research study into the performance and effectiveness of a recently developed innovative composite panel wall system was undertaken at Queensland University of Technology using both full scale fire tests and numerical studies. Experimental results of LSF walls using the new composite panels under axial compression load have shown the improvement in fire performance and fire resistance rating. Numerical analyses are currently being undertaken using the finite element program ABAQUS. Measured temperature profiles of the studs are used in the numerical models and the results are used to calibrate against full scale test results. The validated model will be used in a detailed parametric study with an aim to develop suitable design rules within the current cold-formed steel structures and fire design standards. This paper will present the results of experimental and numerical investigations into the structural and fire behaviour of light gauge steel stud walls protected by the new composite panel. It will demonstrate the improvements provided by the new composite panel system in comparison to traditional wall systems.
Resumo:
Recent years have seen an increased uptake of business process management technology in industries. This has resulted in organizations trying to manage large collections of business process models. One of the challenges facing these organizations concerns the retrieval of models from large business process model repositories. For example, in some cases new process models may be derived from existing models, thus finding these models and adapting them may be more effective than developing them from scratch. As process model repositories may be large, query evaluation may be time consuming. Hence, we investigate the use of indexes to speed up this evaluation process. Experiments are conducted to demonstrate that our proposal achieves a significant reduction in query evaluation time.
Resumo:
This thesis is about the derivation of the addition law on an arbitrary elliptic curve and efficiently adding points on this elliptic curve using the derived addition law. The outcomes of this research guarantee practical speedups in higher level operations which depend on point additions. In particular, the contributions immediately find applications in cryptology. Mastered by the 19th century mathematicians, the study of the theory of elliptic curves has been active for decades. Elliptic curves over finite fields made their way into public key cryptography in late 1980’s with independent proposals by Miller [Mil86] and Koblitz [Kob87]. Elliptic Curve Cryptography (ECC), following Miller’s and Koblitz’s proposals, employs the group of rational points on an elliptic curve in building discrete logarithm based public key cryptosystems. Starting from late 1990’s, the emergence of the ECC market has boosted the research in computational aspects of elliptic curves. This thesis falls into this same area of research where the main aim is to speed up the additions of rational points on an arbitrary elliptic curve (over a field of large characteristic). The outcomes of this work can be used to speed up applications which are based on elliptic curves, including cryptographic applications in ECC. The aforementioned goals of this thesis are achieved in five main steps. As the first step, this thesis brings together several algebraic tools in order to derive the unique group law of an elliptic curve. This step also includes an investigation of recent computer algebra packages relating to their capabilities. Although the group law is unique, its evaluation can be performed using abundant (in fact infinitely many) formulae. As the second step, this thesis progresses the finding of the best formulae for efficient addition of points. In the third step, the group law is stated explicitly by handling all possible summands. The fourth step presents the algorithms to be used for efficient point additions. In the fifth and final step, optimized software implementations of the proposed algorithms are presented in order to show that theoretical speedups of step four can be practically obtained. In each of the five steps, this thesis focuses on five forms of elliptic curves over finite fields of large characteristic. A list of these forms and their defining equations are given as follows: (a) Short Weierstrass form, y2 = x3 + ax + b, (b) Extended Jacobi quartic form, y2 = dx4 + 2ax2 + 1, (c) Twisted Hessian form, ax3 + y3 + 1 = dxy, (d) Twisted Edwards form, ax2 + y2 = 1 + dx2y2, (e) Twisted Jacobi intersection form, bs2 + c2 = 1, as2 + d2 = 1, These forms are the most promising candidates for efficient computations and thus considered in this work. Nevertheless, the methods employed in this thesis are capable of handling arbitrary elliptic curves. From a high level point of view, the following outcomes are achieved in this thesis. - Related literature results are brought together and further revisited. For most of the cases several missed formulae, algorithms, and efficient point representations are discovered. - Analogies are made among all studied forms. For instance, it is shown that two sets of affine addition formulae are sufficient to cover all possible affine inputs as long as the output is also an affine point in any of these forms. In the literature, many special cases, especially interactions with points at infinity were omitted from discussion. This thesis handles all of the possibilities. - Several new point doubling/addition formulae and algorithms are introduced, which are more efficient than the existing alternatives in the literature. Most notably, the speed of extended Jacobi quartic, twisted Edwards, and Jacobi intersection forms are improved. New unified addition formulae are proposed for short Weierstrass form. New coordinate systems are studied for the first time. - An optimized implementation is developed using a combination of generic x86-64 assembly instructions and the plain C language. The practical advantages of the proposed algorithms are supported by computer experiments. - All formulae, presented in the body of this thesis, are checked for correctness using computer algebra scripts together with details on register allocations.
Resumo:
The mechanical strength and failure behavior of conventional and microstructured silica optical fibers was investigated using a tensile test and fracture mechanics and numerical analyses. The effect of polymer coating on failure behavior was also studied. The results indicate that all these fibers fail in a brittle manner and failure normally starts from fiber surfaces. The failure loads observed in coated fibers are higher than those in bare fibers. The introduction of air holes reduces fiber strength and their geometrical arrangements have a remarkable effect on stress distribution in the longitudinal direction. These results are potentially useful for the design, fabrication and evaluation of optical fibers for a wide range of applications.
Resumo:
This paper presents a simple and intuitive approach to determining the kinematic parameters of a serial-link robot in Denavit– Hartenberg (DH) notation. Once a manipulator’s kinematics is parameterized in this form, a large body of standard algorithms and code implementations for kinematics, dynamics, motion planning, and simulation are available. The proposed method has two parts. The first is the “walk through,” a simple procedure that creates a string of elementary translations and rotations, from the user-defined base coordinate to the end-effector. The second step is an algebraic procedure to manipulate this string into a form that can be factorized as link transforms, which can be represented in standard or modified DH notation. The method allows for an arbitrary base and end-effector coordinate system as well as an arbitrary zero joint angle pose. The algebraic procedure is amenable to computer algebra manipulation and a Java program is available as supplementary downloadable material.
Resumo:
Recently, the numerical modelling and simulation for anomalous subdiffusion equation (ASDE), which is a type of fractional partial differential equation( FPDE) and has been found with widely applications in modern engineering and sciences, are attracting more and more attentions. The current dominant numerical method for modelling ASDE is Finite Difference Method (FDM), which is based on a pre-defined grid leading to inherited issues or shortcomings. This paper aims to develop an implicit meshless approach based on the radial basis functions (RBF) for numerical simulation of the non-linear ASDE. The discrete system of equations is obtained by using the meshless shape functions and the strong-forms. The stability and convergence of this meshless approach are then discussed and theoretically proven. Several numerical examples with different problem domains are used to validate and investigate accuracy and efficiency of the newly developed meshless formulation. The results obtained by the meshless formulations are also compared with those obtained by FDM in terms of their accuracy and efficiency. It is concluded that the present meshless formulation is very effective for the modeling and simulation of the ASDE. Therefore, the meshless technique should have good potential in development of a robust simulation tool for problems in engineering and science which are governed by the various types of fractional differential equations.
Resumo:
The large deformation analysis is one of major challenges in numerical modelling and simulation of metal forming. Because no mesh is used, the meshfree methods show good potential for the large deformation analysis. In this paper, a local meshfree formulation, based on the local weak-forms and the updated Lagrangian (UL) approach, is developed for the large deformation analysis. To fully employ the advantages of meshfree methods, a simple and effective adaptive technique is proposed, and this procedure is much easier than the re-meshing in FEM. Numerical examples of large deformation analysis are presented to demonstrate the effectiveness of the newly developed nonlinear meshfree approach. It has been found that the developed meshfree technique provides a superior performance to the conventional FEM in dealing with large deformation problems for metal forming.
Resumo:
Machine vision represents a particularly attractive solution for sensing and detecting potential collision-course targets due to the relatively low cost, size, weight, and power requirements of the sensors involved. This paper describes the development of detection algorithms and the evaluation of a real-time flight ready hardware implementation of a vision-based collision detection system suitable for fixed-wing small/medium size UAS. In particular, this paper demonstrates the use of Hidden Markov filter to track and estimate the elevation (β) and bearing (α) of the target, compares several candidate graphic processing hardware choices, and proposes an image based visual servoing approach to achieve collision avoidance
Resumo:
As a result of rapid urbanisation, population growth, changes in lifestyle, pollution and the impacts of climate change, water provision has become a critical challenge for planners and policy-makers. In the wake of increasingly difficult water provision and drought, the notion that freshwater is a finite and vulnerable resource is increasingly being realised. Many city administrations around the world are struggling to provide water security for their residents to maintain lifestyle and economic growth. This chapter reviews the global challenge of providing freshwater to sustain lifestyles and economic growth, and the contributing challenges of climate change, urbanisation, population growth and problems in rainfall distribution. The chapter proceeds to evaluate major alternatives to current water sources such as conservation, recycling and reclamation, and desalination. Integrated water resource management is briefly looked at to explore its role in complementing water provision. A comparative study on alternative resources is undertaken to evaluate their strengths, weaknesses, opportunities and constraints, and the results are discussed.
Resumo:
The theory of nonlinear dyamic systems provides some new methods to handle complex systems. Chaos theory offers new concepts, algorithms and methods for processing, enhancing and analyzing the measured signals. In recent years, researchers are applying the concepts from this theory to bio-signal analysis. In this work, the complex dynamics of the bio-signals such as electrocardiogram (ECG) and electroencephalogram (EEG) are analyzed using the tools of nonlinear systems theory. In the modern industrialized countries every year several hundred thousands of people die due to sudden cardiac death. The Electrocardiogram (ECG) is an important biosignal representing the sum total of millions of cardiac cell depolarization potentials. It contains important insight into the state of health and nature of the disease afflicting the heart. Heart rate variability (HRV) refers to the regulation of the sinoatrial node, the natural pacemaker of the heart by the sympathetic and parasympathetic branches of the autonomic nervous system. Heart rate variability analysis is an important tool to observe the heart's ability to respond to normal regulatory impulses that affect its rhythm. A computerbased intelligent system for analysis of cardiac states is very useful in diagnostics and disease management. Like many bio-signals, HRV signals are non-linear in nature. Higher order spectral analysis (HOS) is known to be a good tool for the analysis of non-linear systems and provides good noise immunity. In this work, we studied the HOS of the HRV signals of normal heartbeat and four classes of arrhythmia. This thesis presents some general characteristics for each of these classes of HRV signals in the bispectrum and bicoherence plots. Several features were extracted from the HOS and subjected an Analysis of Variance (ANOVA) test. The results are very promising for cardiac arrhythmia classification with a number of features yielding a p-value < 0.02 in the ANOVA test. An automated intelligent system for the identification of cardiac health is very useful in healthcare technology. In this work, seven features were extracted from the heart rate signals using HOS and fed to a support vector machine (SVM) for classification. The performance evaluation protocol in this thesis uses 330 subjects consisting of five different kinds of cardiac disease conditions. The classifier achieved a sensitivity of 90% and a specificity of 89%. This system is ready to run on larger data sets. In EEG analysis, the search for hidden information for identification of seizures has a long history. Epilepsy is a pathological condition characterized by spontaneous and unforeseeable occurrence of seizures, during which the perception or behavior of patients is disturbed. An automatic early detection of the seizure onsets would help the patients and observers to take appropriate precautions. Various methods have been proposed to predict the onset of seizures based on EEG recordings. The use of nonlinear features motivated by the higher order spectra (HOS) has been reported to be a promising approach to differentiate between normal, background (pre-ictal) and epileptic EEG signals. In this work, these features are used to train both a Gaussian mixture model (GMM) classifier and a Support Vector Machine (SVM) classifier. Results show that the classifiers were able to achieve 93.11% and 92.67% classification accuracy, respectively, with selected HOS based features. About 2 hours of EEG recordings from 10 patients were used in this study. This thesis introduces unique bispectrum and bicoherence plots for various cardiac conditions and for normal, background and epileptic EEG signals. These plots reveal distinct patterns. The patterns are useful for visual interpretation by those without a deep understanding of spectral analysis such as medical practitioners. It includes original contributions in extracting features from HRV and EEG signals using HOS and entropy, in analyzing the statistical properties of such features on real data and in automated classification using these features with GMM and SVM classifiers.
Resumo:
Shaft-mounted gearboxes are widely used in industry. The torque arm that holds the reactive torque on the housing of the gearbox, if properly positioned creates the reactive force that lifts the gearbox and unloads the bearings of the output shaft. The shortcoming of these torque arms is that if the gearbox is reversed the direction of the reactive force on the torque arm changes to opposite and added to the weight of the gearbox overloads the bearings shortening their operating life. In this paper, a new patented design of torque arms that develop a controlled lifting force and counteract the weight of the gearbox regardless of the direction of the output shaft rotation is described. Several mathematical models of the conventional and new torque arms were developed and verified experimentally on a specially built test rig that enables modelling of the radial compliance of the gearbox bearings and elastic elements of the torque arms. Comparison showed a good agreement between theoretical and experimental results.
Resumo:
This paper introduces a model to facilitate delegation, including ad-hoc delegation, in cross security domain activities. Specifically, this paper proposes a novel delegation constraint management model to manage and track delegation constraints across security domains. An algorithm to trace the authority of delegation constraints is introduced as well as an algorithm to form a delegation constraint set and detect/prevent potential conflicts. The algorithms and the management model are built upon a set of formal definitions of delegation constraints.