978 resultados para Normalization constraint
Resumo:
Growing awareness of cerebellar involvement in addiction is based on the cerebellum's intermediary position between motor and reward, potentially acting as an interface between motivational and cognitive functions. Here, we examined the impact of acute and repeated cocaine exposure on the two main signaling systems in the mouse cerebellum: the endocannabinoid (eCB) and glutamate systems. To this end, we investigated whether eCB signaling-related gene and protein expression {cannabinoid receptor type 1 receptors and enzymes that produce [diacylglycerol lipase alpha/beta (DAGLα/β) and N-acyl phosphatidylethanolamine phospholipase D (NAPE-PLD)] and degrade [monoacylglycerol lipase (MAGL) and fatty acid amino hydrolase (FAAH)] eCB} were altered. In addition, we analyzed the gene expression of relevant components of the glutamate signaling system [glutamate synthesizing enzymes liver-type glutaminase isoform (LGA) and kidney-type glutaminase isoform (KGA), metabotropic glutamatergic receptor (mGluR3/5), NMDA-ionotropic glutamatergic receptor (NR1/2A/2B/2C) and AMPA-ionotropic receptor subunits (GluR1/2/3/4)] and the gene expression of tyrosine hydroxylase (TH), the rate-limiting enzyme in catecholamine biosynthesis, because noradrenergic terminals innervate the cerebellar cortex. Results indicated that acute cocaine exposure decreased DAGLα expression, suggesting a down-regulation of 2-arachidonylglycerol (2-AG) production, as well as gene expression of TH, KGA, mGluR3 and all ionotropic receptor subunits analyzed in the cerebellum. The acquisition of conditioned locomotion and sensitization after repeated cocaine exposure were associated with an increased NAPE-PLD/FAAH ratio, suggesting enhanced anandamide production, and a decreased DAGLβ/MAGL ratio, suggesting decreased 2-AG generation. Repeated cocaine also increased LGA gene expression but had no effect on glutamate receptors. These findings indicate that acute cocaine modulates the expression of the eCB and glutamate systems. Repeated cocaine results in normalization of glutamate receptor expression, although sustained changes in eCB is observed. We suggest that cocaine-induced alterations to cerebellar eCB should be considered when analyzing the adaptations imposed by psychostimulants that lead to addiction.
Resumo:
Dilatation of the ascending aorta (AAD) is a prevalent aortopathy that occurs frequently associated with bicuspid aortic valve (BAV), the most common human congenital cardiac malformation. The molecular mechanisms leading to AAD associated with BAV are still poorly understood. The search for differentially expressed genes in diseased tissue by quantitative real-time PCR (qPCR) is an invaluable tool to fill this gap. However, studies dedicated to identify reference genes necessary for normalization of mRNA expression in aortic tissue are scarce. In this report, we evaluate the qPCR expression of six candidate reference genes in tissue from the ascending aorta of 52 patients with a variety of clinical and demographic characteristics, normal and dilated aortas, and different morphologies of the aortic valve (normal aorta and normal valve n = 30; dilated aorta and normal valve n = 10; normal aorta and BAV n = 4; dilated aorta and BAV n = 8). The expression stability of the candidate reference genes was determined with three statistical algorithms, GeNorm, NormFinder and Bestkeeper. The expression analyses showed that the most stable genes for the three algorithms employed were CDKN1β, POLR2A and CASC3, independently of the structure of the aorta and the valve morphology. In conclusion, we propose the use of these three genes as reference genes for mRNA expression analysis in human ascending aorta. However, we suggest searching for specific reference genes when conducting qPCR experiments with new cohort of samples.
Resumo:
In this article we introduce JULIDE, a software toolkit developed to perform the 3D reconstruction, intensity normalization, volume standardization by 3D image registration and voxel-wise statistical analysis of autoradiographs of mouse brain sections. This software tool has been developed in the open-source ITK software framework and is freely available under a GPL license. The article presents the complete image processing chain from raw data acquisition to 3D statistical group analysis. Results of the group comparison in the context of a study on spatial learning are shown as an illustration of the data that can be obtained with this tool.
Resumo:
Marine mammals are often reported to possess reduced variation of major histocompatibility complex (MHC) genes compared with their terrestrial counterparts. We evaluated diversity at two MHC class II B genes, DQB and DRB, in the New Zealand sea lion (Phocarctos hookeri, NZSL) a species that has suffered high mortality owing to bacterial epizootics, using Sanger sequencing and haplotype reconstruction, together with next-generation sequencing. Despite this species' prolonged history of small population size and highly restricted distribution, we demonstrate extensive diversity at MHC DRB with 26 alleles, whereas MHC DQB is dimorphic. We identify four DRB codons, predicted to be involved in antigen binding, that are evolving under adaptive evolution. Our data suggest diversity at DRB may be maintained by balancing selection, consistent with the role of this locus as an antigen-binding region and the species' recent history of mass mortality during a series of bacterial epizootics. Phylogenetic analyses of DQB and DRB sequences from pinnipeds and other carnivores revealed significant allelic diversity, but little phylogenetic depth or structure among pinniped alleles; thus, we could neither confirm nor refute the possibility of trans-species polymorphism in this group. The phylogenetic pattern observed however, suggests some significant evolutionary constraint on these loci in the recent past, with the pattern consistent with that expected following an epizootic event. These data may help further elucidate some of the genetic factors underlying the unusually high susceptibility to bacterial infection of the threatened NZSL, and help us to better understand the extent and pattern of MHC diversity in pinnipeds.
Resumo:
Malnutrition affects 40-50% of patients with ear, nose and throat (ENT) cancer. The aim of this study was to assess changes induced by a specific nutritional supplement enriched with n-3 polyunsaturated fatty acids, fiber and greater amounts of proteins and electrolytes, as compared with a standard nutritional supplement, on markers of inflammation, oxidative stress and metabolic status of ENT cancer patients undergoing radiotherapy (RT). Fourteen days after starting RT, 26 patients were randomly allocated to one of two groups, 13 supplemented with Prosure, an oncologic formula enriched with n-3 polyunsaturated fatty acids, fiber and greater amounts of proteins and electrolytes (specific supplement), and 13 supplemented with Standard-Isosource (standard supplement). Patients were evaluated before RT, and 14, 28 and 90 days after starting RT. The results showed that there were no significant differences between the groups, but greater changes were observed in the standard supplement group, such as a decline in body mass index (BMI), reductions in hematocrit, erythrocyte, eosinophil and albumin levels, and a rise in creatinine and urea levels. We concluded that metabolic, inflammatory and oxidative stress parameters were altered during RT, and began to normalize at the end of the study. Patients supplemented with Prosure showed an earlier normalization of these parameters, with more favorable changes in oxidative stress markers and a more balanced evolution, although the difference was not significant.
Resumo:
The host's immune response to hepatitis C virus (HCV) can result in the selection of characteristic mutations (adaptations) that enable the virus to escape this response. The ability of the virus to mutate at these sites is dependent on the incoming virus, the fitness cost incurred by the mutation, and the benefit to the virus in escaping the response. Studies examining viral adaptation in chronic HCV infection have shown that these characteristic immune escape mutations can be observed at the population level as human leukocyte antigen (HLA)-specific viral polymorphisms. We examined 63 individuals with chronic HCV infection who were infected from a single HCV genotype 1b source. Our aim was to determine the extent to which the host's immune pressure affects HCV diversity and the ways in which the sequence of the incoming virus, including preexisting escape mutations, can influence subsequent mutations in recipients and infection outcomes. Conclusion: HCV sequences from these individuals revealed 29 significant associations between specific HLA types within the new hosts and variations within their viruses, which likely represent new viral adaptations. These associations did not overlap with previously reported adaptations for genotypes 1a and 3a and possibly reflected a combination of constraint due to the incoming virus and genetic distance between the strains. However, these sites accounted for only a portion of the sites in which viral diversity was observed in the new hosts. Furthermore, preexisting viral adaptations in the incoming (source) virus likely influenced the outcomes in the new hosts.
Resumo:
Calculating explicit closed form solutions of Cournot models where firms have private information about their costs is, in general, very cumbersome. Most authors consider therefore linear demands and constant marginal costs. However, within this framework, the nonnegativity constraint on prices (and quantities) has been ignored or not properly dealt with and the correct calculation of all Bayesian Nash equilibria is more complicated than expected. Moreover, multiple symmetric and interior Bayesianf equilibria may exist for an open set of parameters. The reason for this is that linear demand is not really linear, since there is a kink at zero price: the general ''linear'' inverse demand function is P (Q) = max{a - bQ, 0} rather than P (Q) = a - bQ.
Resumo:
The main objective of this project is to model the ARP (Aircraft Recovery Problem) from a constraint programming (CP) point of view. The information required for this project is extracted from previous papers that cope with the problem using heuristics, metaheuristics or using network-models. Also, two scenarios will be tested to verify that the implementation is correct.
Resumo:
Résumé de la thèseBien que le mutualisme puisse être considéré comme une relation harmonieuse entre différentes espèces, son étude révèle plutôt une exploitation réciproque où chaque partenaire tente de maximiser ses bénéfices tout en réduisant ses coûts. Dans ce contexte, l'identification des facteurs qui favorisent ou contrarient, au cours de l'évolution, une issue mutualiste est une étape majeure pour pouvoir reconstruire les étapes clés menant à l'apparition et au maintien des interactions mutualistes. Le but de ce doctorat était l'identification des traits phénotypiques qui permettent à la plante Silene latofolia (Caryophyllacée)et à son pollinisateur - prédateur de graines, la phalène Hadena bicruris (Noctuidé), d'augmenter les bénéfices nets que chacun retire de l'interaction. Ce système d'étude est particulièrement bien approprié à l'étude de ces traits, car on peut assez facilement estimer la qualité et la quantité des descendants (fitness) des deux partenaires. En effet, la femelle papillon pond un oeuf dans la fleur qu'elle pollinise et sa larve se développe dans le fruit, consommant les graines de la plante. Ainsi, sur une même plante, il est possible d'estimer les succès respectifs de la plante et du papillon à obtenir une descendance. De plus, le conflit d'intérêt autour des graines qui sont indispensables, à la fois à la plante et au papillon, peut stimuler l'évolution de traits qui limitent la surexploitation réciproque des partenaires. Dans une première étude, j'ai montré que le papillon mâle était un pollinisateur efficace de S. latifolia et qu'ainsi, il permettait à la plante d'augmenter le nombre de graines produites (i.e.bénéfice) sans pour autant augmenter la quantité de larves sur la plante. Dans ce système, les papillons pondent un seul oeuf par fleur, déposé soit à l'intérieur de la fleur, dans le tube de corolle, soit sur le pétale. Ma seconde étude montre que les plantes répondent différemment à la présence des oeufs suivant leur position. Aussi, quand l'oeuf est placé dans la fleur, la plante a davantage tendance à ne pas développer le fruit de la fleur infesté ou bien à produire des fruits plus petits que lorsque l'oeuf est placé sur le pétale. Enfin, j'ai montré que la femelle du papillon pond plus souvent sur le pétale lorsque elle visite des fleurs dotées d'un long tube de corolle, et que les larves issues de ces oeufs ont moins de chances de réussir à pénétrer dans le fruit que les larves issues des oeufs placés à l'intérieur de la fleur. Aussi, la variation observée du site de ponte pourrait être causé par la morphologie de la fleur qui contraint le papillon à pondre sur le pétale. Vu dans leur ensemble, les résultats obtenus pendant ce doctorat suggèrent que la participation des mâles à la pollination, l'absence de développement des fruits et la profondeur du tube de corolle pourraient réduire les coûts que S. latifolia subit dans son interaction avec H. bicruris. Par ailleurs, je n'ai pas détecté de mécanismes qui permettraient au papillon de réduire les coûts que la plante pourrait lui imposer. La prochaine étape serait de déterminer l'effet des traits identifiés dans ce doctorat sur la fitness globale de la plante et du papillon pour estimer pleinement leur efficacité à réduire les coûts et à favoriser une issue mutualiste. De même, il faudrait évaluer l'effet de ces traits en populations naturelles pour identifier le rôle des facteurs environnementaux sur leur efficacité.AbstractAlthough mutualisms can be regarded as harmonious relationships between the interacting partners, they are best conceptualized as reciprocal exploitations in which each partner attempts to increase its own benefits and decrease its costs. To date, identifying the factors which promote or discourage mutualistic outcomes remains a major goal to reconstruct the ecological conditions leading to mutualisms. The aim of this PhD thesis was to identify phenotypic traits that may increase the net benefits of each partner in the interaction between the plant Silene latifolia (Caryophyllaceae) and its pollinator / seed predator, the moth Hadena bicruris (Noctuidae). This study system is particularly well suited because the fitness of both interacting species can be assessed. The female moth lays its egg in the flower it pollinated, and its offspring grows in the fruit, feeding on the seeds of the plant, which allows for the follow-up of both larva and fruit fates. Furthermore, the inherent conflict of interest over the seeds as plant progeny vs. larval resource may stimulate the evolution of traits that reduce overexploitation in both the moth and plant. In a first study, I show that male moths are efficient pollinators, hence increasing seed production without increasing oviposition. The contribution of male moths to pollination might thus improve the net benefits of the interaction for the host plant. Females of the H. bicruris moth lay a single egg per flower, and place it either inside the corolla tube or on the petal. My second study shows that plants are more likely to abort the infested flower or to produce a smaller fruit when the egg was experimentally placed inside the flower compared to plants that received an egg on the petal. Finally, female moths were found to lay their eggs more frequently on the petal when visiting a flower with a deep corolla tube, and larvae hatching from these eggs less likely to successfully attack the fruit. Variation in egg position on the flower may thus be the result of a constraint imposed by floral morphology. Overall, this PhD work suggests that the pollination by male moths, flower abortion, and deep corolla tube may efficiently reduce the costs experienced by S. latifolia in its interaction with H. bicruris. Interestingly, no apparent mechanism of costs reduction was detected for the moth. Further studies should focus on the effects of these traits (i) in the long term fitness of both the plant and the insect and (ii) their interactions with environmental factors (biotic and abiotic) that may affect their efficiency in natural populations.
Resumo:
Purpose/Objective(s): To implement a carotid dose sparing protocol using helical Tomotherapy in T1N0 squamous cell laryngeal carcinoma.Materials/Methods: Between July and August 2010, 7 men with stage T1N0 laryngeal carcinoma were included in this study. Age ranged from 47 - 74 years. Staging included endoscopic examination, CT-scan and MRI when indicated. Planned irradiation dose was 70 Gy in 35 fractions over 7 weeks. A simple treatment planning algorithm for carotid sparing was used: maximum point dose to the carotids 35 Gy, to the spinal cord 30 Gy, and 100% PTV volume to be covered with 95% of the prescribed dose. Carotid volume of interest extended to 1 cm above and below of the PTV. Doses to the carotid arteries, to the critical organs, and to the planned target volume (PTV) with our standard laryngeal irradiation protocol was compared. Daily megavoltage scans were obtained before each fraction. When necessary, the Planned Adaptive software (TomoTherapy Inc., Madison, WI) was used to evaluatethe need for a re-planning, which has never been indicated. Dose data were extracted using the VelocityAI software (Atlanta, GA), and data normalization and dose-volume histogram (DVH) interpolation were realized using the Igor Pro software (Portland, OR).Results:A significant (p\0.05) carotid dose sparing compared to our standard protocol with an average maximum point dose of 38.3 Gy (standard deviation [SD] 4.05 Gy), average mean dose of 18.59 Gy (SD 0.83 Gy) was achieved. In all patients, 95% of the carotid volume received less than 28.4 Gy (SD 0.98 Gy). The average maximum point dose to the spinal cord was 25.8 Gy (SD 3.24 Gy). PTV was fully covered with more than 95% of the prescribed dose for all patients with an average maximum point dose of 74.1 Gy and the absolute maximum dose in a single patient of 75.2 Gy. To date, the clinical outcomes have been excellent. Three patients (42%) developed stage 1 mucositis that was conservatively managed, and all the patients presented a mild to moderate dysphonia. All adverse effects resolved spontaneously in the month following the end of treatment. Early local control rate is 100% considering a 4 - 5 months post treatment follow-up.Conclusions: Helical Tomotherapy allows a clinically significant decrease of carotid irradiation dose compared to standard irradiation protocols with an acceptable spinal cord dose tradeoff. Moreover, this technique allows the PTV to be homogenously covered with a curative irradiation dose. Daily control imaging brings added security margins especially when working with high dose gradients. Further investigations and follow-up are underway to better evaluate the late clinical outcomes especially the local control rate, late laryngeal and vascular toxicity, and expected potential impact on cerebrovascular events.
Resumo:
This paper deals with fault detection and isolation problems for nonlinear dynamic systems. Both problems are stated as constraint satisfaction problems (CSP) and solved using consistency techniques. The main contribution is the isolation method based on consistency techniques and uncertainty space refining of interval parameters. The major advantage of this method is that the isolation speed is fast even taking into account uncertainty in parameters, measurements, and model errors. Interval calculations bring independence from the assumption of monotony considered by several approaches for fault isolation which are based on observers. An application to a well known alcoholic fermentation process model is presented
Resumo:
Often practical performance of analytical redundancy for fault detection and diagnosis is decreased by uncertainties prevailing not only in the system model, but also in the measurements. In this paper, the problem of fault detection is stated as a constraint satisfaction problem over continuous domains with a big number of variables and constraints. This problem can be solved using modal interval analysis and consistency techniques. Consistency techniques are then shown to be particularly efficient to check the consistency of the analytical redundancy relations (ARRs), dealing with uncertain measurements and parameters. Through the work presented in this paper, it can be observed that consistency techniques can be used to increase the performance of a robust fault detection tool, which is based on interval arithmetic. The proposed method is illustrated using a nonlinear dynamic model of a hydraulic system
Resumo:
Nowadays, the joint exploitation of images acquired daily by remote sensing instruments and of images available from archives allows a detailed monitoring of the transitions occurring at the surface of the Earth. These modifications of the land cover generate spectral discrepancies that can be detected via the analysis of remote sensing images. Independently from the origin of the images and of type of surface change, a correct processing of such data implies the adoption of flexible, robust and possibly nonlinear method, to correctly account for the complex statistical relationships characterizing the pixels of the images. This Thesis deals with the development and the application of advanced statistical methods for multi-temporal optical remote sensing image processing tasks. Three different families of machine learning models have been explored and fundamental solutions for change detection problems are provided. In the first part, change detection with user supervision has been considered. In a first application, a nonlinear classifier has been applied with the intent of precisely delineating flooded regions from a pair of images. In a second case study, the spatial context of each pixel has been injected into another nonlinear classifier to obtain a precise mapping of new urban structures. In both cases, the user provides the classifier with examples of what he believes has changed or not. In the second part, a completely automatic and unsupervised method for precise binary detection of changes has been proposed. The technique allows a very accurate mapping without any user intervention, resulting particularly useful when readiness and reaction times of the system are a crucial constraint. In the third, the problem of statistical distributions shifting between acquisitions is studied. Two approaches to transform the couple of bi-temporal images and reduce their differences unrelated to changes in land cover are studied. The methods align the distributions of the images, so that the pixel-wise comparison could be carried out with higher accuracy. Furthermore, the second method can deal with images from different sensors, no matter the dimensionality of the data nor the spectral information content. This opens the doors to possible solutions for a crucial problem in the field: detecting changes when the images have been acquired by two different sensors.
Resumo:
The analysis of multi-modal and multi-sensor images is nowadays of paramount importance for Earth Observation (EO) applications. There exist a variety of methods that aim at fusing the different sources of information to obtain a compact representation of such datasets. However, for change detection existing methods are often unable to deal with heterogeneous image sources and very few consider possible nonlinearities in the data. Additionally, the availability of labeled information is very limited in change detection applications. For these reasons, we present the use of a semi-supervised kernel-based feature extraction technique. It incorporates a manifold regularization accounting for the geometric distribution and jointly addressing the small sample problem. An exhaustive example using Landsat 5 data illustrates the potential of the method for multi-sensor change detection.
Resumo:
Introduction: Neuroimaging of the self focused on high-level mechanisms such as language, memory or imagery of the self. Recent evidence suggests that low-level mechanisms of multisensory and sensorimotor integration may play a fundamental role in encoding self-location and the first-person perspective (Blanke and Metzinger, 2009). Neurological patients with out-of body experiences (OBE) suffer from abnormal self-location and the first-person perspective due to a damage in the temporo-parietal junction (Blanke et al., 2004). Although self-location and the first-person perspective can be studied experimentally (Lenggenhager et al., 2009), the neural underpinnings of self-location have yet to be investigated. To investigate the brain network involved in self-location and first-person perspective we used visuo-tactile multisensory conflict, magnetic resonance (MR)-compatible robotics, and fMRI in study 1, and lesion analysis in a sample of 9 patients with OBE due to focal brain damage in study 2. Methods: Twenty-two participants saw a video showing either a person's back or an empty room being stroked (visual stimuli) while the MR-compatible robotic device stroked their back (tactile stimulation). Direction and speed of the seen stroking could either correspond (synchronous) or not (asynchronous) to those of the seen stroking. Each run comprised the four conditions according to a 2x2 factorial design with Object (Body, No-Body) and Synchrony (Synchronous, Asynchronous) as main factors. Self-location was estimated using the mental ball dropping (MBD; Lenggenhager et al., 2009). After the fMRI session participants completed a 6-item adapted from the original questionnaire created by Botvinick and Cohen (1998) and based on questions and data obtained by Lenggenhager et al. (2007, 2009). They were also asked to complete a questionnaire to disclose the perspective they adopted during the illusion. Response times (RTs) for the MBD and fMRI data were analyzed with a 3-way mixed model ANOVA with the in-between factor Perspective (up, down) and the two with-in factors Object (body, no-body) and Stroking (synchronous, asynchronous). Quantitative lesion analysis was performed using MRIcron (Rorden et al., 2007). We compared the distributions of brain lesions confirmed by multimodality imaging (Knowlton, 2004) in patients with OBE with those showing complex visual hallucinations involving people or faces, but without any disturbance of self-location and first person perspective. Nine patients with OBE were investigated. The control group comprised 8 patients. Structural imaging data were available for normalization and co-registration in all the patients. Normalization of each patient's lesion into the common MNI (Montreal Neurological Institute) reference space permitted simple, voxel-wise, algebraic comparisons to be made. Results: Even if in the scanner all participants were lying on their back and were facing upwards, analysis of perspective showed that half of the participants had the impression to be looking down at the virtual human body below them, despite any cues about their body position (Down-group). The other participants had the impression to be looking up at the virtual body above them (Up-group). Analysis of Q3 ("How strong was the feeling that the body you saw was you?") indicated stronger self-identification with the virtual body during the synchronous stroking. RTs in the MBD task confirmed these subjective data (significant 3-way interaction between perspective, object and stroking). fMRI results showed eight cortical regions where the BOLD signal was significantly different during at least one of the conditions resulting from the combination of Object and Stroking, relative to baseline: right and left temporo-parietal junction, right EBA, left middle occipito-temporal gyrus, left postcentral gyrus, right medial parietal lobe, bilateral medial occipital lobe (Fig 1). The activation patterns in right and left temporo-parietal junction and right EBA reflected changes in self-location and perspective as revealed by statistical analysis that was performed on the percentage of BOLD change with respect to the baseline. Statistical lesion overlap comparison (using nonparametric voxel based lesion symptom mapping) with respect to the control group revealed the right temporo-parietal junction, centered at the angular gyrus (Talairach coordinates x = 54, y =-52, z = 26; p>0.05, FDR corrected). Conclusions: The present questionnaire and behavioural results show that - despite the noisy and constraining MR environment) our participants had predictable changes in self-location, self-identification, and first-person perspective when robotic tactile stroking was applied synchronously with the robotic visual stroking. fMRI data in healthy participants and lesion data in patients with abnormal self-location and first-person perspective jointly revealed that the temporo-parietal cortex especially in the right hemisphere encodes these conscious experiences. We argue that temporo-parietal activity reflects the experience of the conscious "I" as embodied and localized within bodily space.