970 resultados para Navier-Stokes-Smoluchowski
Resumo:
In this paper we examine the equilibrium states of periodic finite amplitude flow in a horizontal channel with differential heating between the two rigid boundaries. The solutions to the Navier-Stokes equations are obtained by means of a perturbation method for evaluating the Landau coefficients and through a Newton-Raphson iterative method that results from the Fourier expansion of the solutions that bifurcate above the linear stability threshold of infini- tesimal disturbances. The results obtained from these two different methods of evaluating the convective flow are compared in the neighbourhood of the critical Rayleigh number. We find that for small Prandtl numbers the discrepancy of the two methods is noticeable.
Resumo:
Purpose – To propose and investigate a stable numerical procedure for the reconstruction of the velocity of a viscous incompressible fluid flow in linear hydrodynamics from knowledge of the velocity and fluid stress force given on a part of the boundary of a bounded domain. Design/methodology/approach – Earlier works have involved the similar problem but for stationary case (time-independent fluid flow). Extending these ideas a procedure is proposed and investigated also for the time-dependent case. Findings – The paper finds a novel variation method for the Cauchy problem. It proves convergence and also proposes a new boundary element method. Research limitations/implications – The fluid flow domain is limited to annular domains; this restriction can be removed undertaking analyses in appropriate weighted spaces to incorporate singularities that can occur on general bounded domains. Future work involves numerical investigations and also to consider Oseen type flow. A challenging problem is to consider non-linear Navier-Stokes equation. Practical implications – Fluid flow problems where data are known only on a part of the boundary occur in a range of engineering situations such as colloidal suspension and swimming of microorganisms. For example, the solution domain can be the region between to spheres where only the outer sphere is accessible for measurements. Originality/value – A novel variational method for the Cauchy problem is proposed which preserves the unsteady Stokes operator, convergence is proved and using recent for the fundamental solution for unsteady Stokes system, a new boundary element method for this system is also proposed.
Resumo:
Using suitable coupled Navier-Stokes Equations for an incompressible Newtonian fluid we investigate the linear and non-linear steady state solutions for both a homogeneously and a laterally heated fluid with finite Prandtl Number (Pr=7) in the vertical orientation of the channel. Both models are studied within the Large Aspect Ratio narrow-gap and under constant flux conditions with the channel closed. We use direct numerics to identify the linear stability criterion in parametric terms as a function of Grashof Number (Gr) and streamwise infinitesimal perturbation wavenumber (making use of the generalised Squire’s Theorem). We find higher harmonic solutions at lower wavenumbers with a resonance of 1:3exist, for both of the heating models considered. We proceed to identify 2D secondary steady state solutions, which bifurcate from the laminar state. Our studies show that 2D solutions are found not to exist in certain regions of the pure manifold, where we find that 1:3 resonant mode 2D solutions exist, for low wavenumber perturbations. For the homogeneously heated fluid, we notice a jump phenomenon existing between the pure and resonant mode secondary solutions for very specific wavenumbers .We attempt to verify whether mixed mode solutions are present for this model by considering the laterally heated model with the same geometry. We find mixed mode solutions for the laterally heated model showing that a bridge exists between the pure and 1:3 resonant mode 2D solutions, of which some are stationary and some travelling. Further, we show that for the homogeneously heated fluid that the 2D solutions bifurcate in hopf bifurcations and there exists a manifold where the 2D solutions are stable to Eckhaus criterion, within this manifold we proceed to identify 3D tertiary solutions and find that the stability for said 3D bifurcations is not phase locked to the 2D state. For the homogeneously heated model we identify a closed loop within the neutral stability curve for higher perturbation wavenumubers and analyse the nature of the multiple 2D bifurcations around this loop for identical wavenumber and find that a temperature inversion occurs within this loop. We conclude that for a homogeneously heated fluid it is possible to have abrup ttransitions between the pure and resonant 2D solutions, and that for the laterally heated model there exist a transient bifurcation via mixed mode solutions.
Magneto-vibratory separation of glass and bronze granular mixtures immersed in a paramagnetic liquid
Resumo:
A fluid-immersed granular mixture may spontaneously separate when subjected to vertical vibration, separation occurring when the ratio of particle inertia to fluid drag is sufficiently different between the component species of the mixture. Here, we describe how fluid-driven separation is influenced by magneto-Archimedes buoyancy, the additional buoyancy force experienced by a body immersed in a paramagnetic fluid when a strong inhomogeneous magnetic field is applied. In our experiments glass and bronze mixtures immersed in paramagnetic aqueous solutions of MnCl2 have been subjected to sinusoidal vertical vibration. In the absence of a magnetic field the separation is similar to that observed when the interstitial fluid is water. However, at modest applied magnetic fields, magneto-Archimedes buoyancy may balance the inertia/fluid-drag separation mechanism, or it may dominate the separation process. We identify the vibratory and magnetic conditions for four granular configurations, each having distinctive granular convection. Abrupt transitions between these states occur at well-defined values of the magnetic and vibrational parameters. In order to gain insight into the dynamics of the separation process we use computer simulations based on solutions of the Navier-Stokes' equations. The simulations reproduce the experimental results revealing the important role of convection and gap formation in the stability of the different states.
Resumo:
Петър Господинов, Добри Данков, Владимир Русинов, Стефан Стефанов - Изследвано е цилиндрично течение на Кует за разреден газ между два въртящи се цилиндъра. Получени са профилите на налягането, скоростта и температурата по метода на прякото статистическо моделиране (DSMC) и чрез числено решаване на уравненията на Навие-Стокс за свиваем флуид. Резултатите сочат много добро съвпадение за малки числа на Кнудсен Kn = 0.02. Показано е, че при различни кинематични гранични условия, газът изостава или избързва спрямо скоростта на стената, или има поведение на твърдо еластично тяло. Получените резултати са важни при решаването на неравнинни, задачи от микрофлуидиката с отчитане на ефектите на кривината.
Resumo:
Петър Господинов, Добри Данков, Владимир Русинов, Стефан Стефанов - Иследвано е цилиндрично течение на Кует на разреден газ в случая на въртене на два коаксиални цилиндъра с еднакви по големина скорости, но в различни посоки. Целта на изследването е да се установи влиянието на малки скорости на въртене върху макрохарактеристиките – ρ, V , . Числените резултати са получени чрез използване на DSMC и числено решение на уравненията на Навие-Стокс за относително малки (дозвукови) скорости на въртене. Установено е добро съвпадение на резултатите получени по двата метода за Kn = 0.02. Установено е, че съществува “стационарна” точка за плътността и скоростта. Получените резултати са важни при решаването на неравнини, задачи от микрофлуидиката с отчитане на ефектите на кривината. Ключови думи: Механика на флуидите, Кинетична теория, Разреден газ, DSMC
Resumo:
The aim of this paper is to study the dynamic characteristics of micromechanical rectangular plates used as sensing elements in a viscous compressible fluid. A novel modelling procedure for the plate- fluid interaction problem is developed on the basis of linearized Navier-Stokes equations and noslip conditions. Analytical expression for the fluidloading impedance is obtained using a double Fourier transform approach. This modelling work provides us an analytical means to study the effects of inertial loading, acoustic radiation and viscous dissipation of the fluid acting on the vibration of microplates. The numerical simulation is conducted on microplates with different boundary conditions and fluids with different viscosities. The simulation results reveal that the acoustic radiation dominates the damping mechanism of the submerged microplates. It is also proved that microplates offer better sensitivities (Q-factors) than the conventional beam type microcantilevers beingmass sensing platforms in a viscous fluid environment. The frequency response features of microplates under highly viscous fluid loading are studied using the present model. The dynamics of the microplates with all edges clamped are less influenced by the highly viscous dissipation of the fluid than the microplates with other types of boundary conditions.
Resumo:
Numerical optimization is a technique where a computer is used to explore design parameter combinations to find extremes in performance factors. In multi-objective optimization several performance factors can be optimized simultaneously. The solution to multi-objective optimization problems is not a single design, but a family of optimized designs referred to as the Pareto frontier. The Pareto frontier is a trade-off curve in the objective function space composed of solutions where performance in one objective function is traded for performance in others. A Multi-Objective Hybridized Optimizer (MOHO) was created for the purpose of solving multi-objective optimization problems by utilizing a set of constituent optimization algorithms. MOHO tracks the progress of the Pareto frontier approximation development and automatically switches amongst those constituent evolutionary optimization algorithms to speed the formation of an accurate Pareto frontier approximation. Aerodynamic shape optimization is one of the oldest applications of numerical optimization. MOHO was used to perform shape optimization on a 0.5-inch ballistic penetrator traveling at Mach number 2.5. Two objectives were simultaneously optimized: minimize aerodynamic drag and maximize penetrator volume. This problem was solved twice. The first time the problem was solved by using Modified Newton Impact Theory (MNIT) to determine the pressure drag on the penetrator. In the second solution, a Parabolized Navier-Stokes (PNS) solver that includes viscosity was used to evaluate the drag on the penetrator. The studies show the difference in the optimized penetrator shapes when viscosity is absent and present in the optimization. In modern optimization problems, objective function evaluations may require many hours on a computer cluster to perform these types of analysis. One solution is to create a response surface that models the behavior of the objective function. Once enough data about the behavior of the objective function has been collected, a response surface can be used to represent the actual objective function in the optimization process. The Hybrid Self-Organizing Response Surface Method (HYBSORSM) algorithm was developed and used to make response surfaces of objective functions. HYBSORSM was evaluated using a suite of 295 non-linear functions. These functions involve from 2 to 100 variables demonstrating robustness and accuracy of HYBSORSM.
Resumo:
Recent technological developments have made it possible to design various microdevices where fluid flow and heat transfer are involved. For the proper design of such systems, the governing physics needs to be investigated. Due to the difficulty to study complex geometries in micro scales using experimental techniques, computational tools are developed to analyze and simulate flow and heat transfer in microgeometries. However, conventional numerical methods using the Navier-Stokes equations fail to predict some aspects of microflows such as nonlinear pressure distribution, increase mass flow rate, slip flow and temperature jump at the solid boundaries. This necessitates the development of new computational methods which depend on the kinetic theory that are both accurate and computationally efficient. In this study, lattice Boltzmann method (LBM) was used to investigate the flow and heat transfer in micro sized geometries. The LBM depends on the Boltzmann equation which is valid in the whole rarefaction regime that can be observed in micro flows. Results were obtained for isothermal channel flows at Knudsen numbers higher than 0.01 at different pressure ratios. LBM solutions for micro-Couette and micro-Poiseuille flow were found to be in good agreement with the analytical solutions valid in the slip flow regime (0.01 < Kn < 0.1) and direct simulation Monte Carlo solutions that are valid in the transition regime (0.1 < Kn < 10) for pressure distribution and velocity field. The isothermal LBM was further extended to simulate flows including heat transfer. The method was first validated for continuum channel flows with and without constrictions by comparing the thermal LBM results against accurate solutions obtained from analytical equations and finite element method. Finally, the capability of thermal LBM was improved by adding the effect of rarefaction and the method was used to analyze the behavior of gas flow in microchannels. The major finding of this research is that, the newly developed particle-based method described here can be used as an alternative numerical tool in order to study non-continuum effects observed in micro-electro-mechanical-systems (MEMS).
Resumo:
The main objective of this work is to develop a quasi three-dimensional numerical model to simulate stony debris flows, considering a continuum fluid phase, composed by water and fine sediments, and a non-continuum phase including large particles, such as pebbles and boulders. Large particles are treated in a Lagrangian frame of reference using the Discrete Element Method, the fluid phase is based on the Eulerian approach, using the Finite Element Method to solve the depth-averaged Navier-Stokes equations in two horizontal dimensions. The particle’s equations of motion are in three dimensions. The model simulates particle-particle collisions and wall-particle collisions, taking into account that particles are immersed in a fluid. Bingham and Cross rheological models are used for the continuum phase. Both formulations provide very stable results, even in the range of very low shear rates. Bingham formulation is better able to simulate the stopping stage of the fluid when applied shear stresses are low. Results of numerical simulations have been compared with data from laboratory experiments on a flume-fan prototype. Results show that the model is capable of simulating the motion of big particles moving in the fluid flow, handling dense particulate flows and avoiding overlap among particles. An application to simulate debris flow events that occurred in Northern Venezuela in 1999 shows that the model could replicate the main boulder accumulation areas that were surveyed by the USGS. Uniqueness of this research is the integration of mud flow and stony debris movement in a single modeling tool that can be used for planning and management of debris flow prone areas.
Resumo:
Recent technological developments have made it possible to design various microdevices where fluid flow and heat transfer are involved. For the proper design of such systems, the governing physics needs to be investigated. Due to the difficulty to study complex geometries in micro scales using experimental techniques, computational tools are developed to analyze and simulate flow and heat transfer in microgeometries. However, conventional numerical methods using the Navier-Stokes equations fail to predict some aspects of microflows such as nonlinear pressure distribution, increase mass flow rate, slip flow and temperature jump at the solid boundaries. This necessitates the development of new computational methods which depend on the kinetic theory that are both accurate and computationally efficient. In this study, lattice Boltzmann method (LBM) was used to investigate the flow and heat transfer in micro sized geometries. The LBM depends on the Boltzmann equation which is valid in the whole rarefaction regime that can be observed in micro flows. Results were obtained for isothermal channel flows at Knudsen numbers higher than 0.01 at different pressure ratios. LBM solutions for micro-Couette and micro-Poiseuille flow were found to be in good agreement with the analytical solutions valid in the slip flow regime (0.01 < Kn < 0.1) and direct simulation Monte Carlo solutions that are valid in the transition regime (0.1 < Kn < 10) for pressure distribution and velocity field. The isothermal LBM was further extended to simulate flows including heat transfer. The method was first validated for continuum channel flows with and without constrictions by comparing the thermal LBM results against accurate solutions obtained from analytical equations and finite element method. Finally, the capability of thermal LBM was improved by adding the effect of rarefaction and the method was used to analyze the behavior of gas flow in microchannels. The major finding of this research is that, the newly developed particle-based method described here can be used as an alternative numerical tool in order to study non-continuum effects observed in micro-electro-mechanical-systems (MEMS).
Resumo:
The aim of this work is to present a methodology to develop cost-effective thermal management solutions for microelectronic devices, capable of removing maximum amount of heat and delivering maximally uniform temperature distributions. The topological and geometrical characteristics of multiple-story three-dimensional branching networks of microchannels were developed using multi-objective optimization. A conjugate heat transfer analysis software package and an automatic 3D microchannel network generator were developed and coupled with a modified version of a particle-swarm optimization algorithm with a goal of creating a design tool for 3D networks of optimized coolant flow passages. Numerical algorithms in the conjugate heat transfer solution package include a quasi-ID thermo-fluid solver and a steady heat diffusion solver, which were validated against results from high-fidelity Navier-Stokes equations solver and analytical solutions for basic fluid dynamics test cases. Pareto-optimal solutions demonstrate that thermal loads of up to 500 W/cm2 can be managed with 3D microchannel networks, with pumping power requirements up to 50% lower with respect to currently used high-performance cooling technologies.
Resumo:
In this work we have investigated some aspects of the two-dimensional flow of a viscous Newtonian fluid through a disordered porous medium modeled by a random fractal system similar to the Sierpinski carpet. This fractal is formed by obstacles of various sizes, whose distribution function follows a power law. They are randomly disposed in a rectangular channel. The velocity field and other details of fluid dynamics are obtained by solving numerically of the Navier-Stokes and continuity equations at the pore level, where occurs actually the flow of fluids in porous media. The results of numerical simulations allowed us to analyze the distribution of shear stresses developed in the solid-fluid interfaces, and find algebraic relations between the viscous forces or of friction with the geometric parameters of the model, including its fractal dimension. Based on the numerical results, we proposed scaling relations involving the relevant parameters of the phenomenon, allowing quantifying the fractions of these forces with respect to size classes of obstacles. Finally, it was also possible to make inferences about the fluctuations in the form of the distribution of viscous stresses developed on the surface of obstacles.
A New Method for Modeling Free Surface Flows and Fluid-structure Interaction with Ocean Applications
Resumo:
The computational modeling of ocean waves and ocean-faring devices poses numerous challenges. Among these are the need to stably and accurately represent both the fluid-fluid interface between water and air as well as the fluid-structure interfaces arising between solid devices and one or more fluids. As techniques are developed to stably and accurately balance the interactions between fluid and structural solvers at these boundaries, a similarly pressing challenge is the development of algorithms that are massively scalable and capable of performing large-scale three-dimensional simulations on reasonable time scales. This dissertation introduces two separate methods for approaching this problem, with the first focusing on the development of sophisticated fluid-fluid interface representations and the second focusing primarily on scalability and extensibility to higher-order methods.
We begin by introducing the narrow-band gradient-augmented level set method (GALSM) for incompressible multiphase Navier-Stokes flow. This is the first use of the high-order GALSM for a fluid flow application, and its reliability and accuracy in modeling ocean environments is tested extensively. The method demonstrates numerous advantages over the traditional level set method, among these a heightened conservation of fluid volume and the representation of subgrid structures.
Next, we present a finite-volume algorithm for solving the incompressible Euler equations in two and three dimensions in the presence of a flow-driven free surface and a dynamic rigid body. In this development, the chief concerns are efficiency, scalability, and extensibility (to higher-order and truly conservative methods). These priorities informed a number of important choices: The air phase is substituted by a pressure boundary condition in order to greatly reduce the size of the computational domain, a cut-cell finite-volume approach is chosen in order to minimize fluid volume loss and open the door to higher-order methods, and adaptive mesh refinement (AMR) is employed to focus computational effort and make large-scale 3D simulations possible. This algorithm is shown to produce robust and accurate results that are well-suited for the study of ocean waves and the development of wave energy conversion (WEC) devices.
Resumo:
Cette thèse concerne la modélisation des interactions fluide-structure et les méthodes numériques qui s’y rattachent. De ce fait, la thèse est divisée en deux parties. La première partie concerne l’étude des interactions fluide-structure par la méthode des domaines fictifs. Dans cette contribution, le fluide est incompressible et laminaire et la structure est considérée rigide, qu’elle soit immobile ou en mouvement. Les outils que nous avons développés comportent la mise en oeuvre d’un algorithme fiable de résolution qui intégrera les deux domaines (fluide et solide) dans une formulation mixte. L’algorithme est basé sur des techniques de raffinement local adaptatif des maillages utilisés permettant de mieux séparer les éléments du milieu fluide de ceux du solide que ce soit en 2D ou en 3D. La seconde partie est l’étude des interactions mécaniques entre une structure flexible et un fluide incompressible. Dans cette contribution, nous proposons et analysons des méthodes numériques partitionnées pour la simulation de phénomènes d’interaction fluide-structure (IFS). Nous avons adopté à cet effet, la méthode dite «arbitrary Lagrangian-Eulerian» (ALE). La résolution fluide est effectuée itérativement à l’aide d’un schéma de type projection et la structure est modélisée par des modèles hyper élastiques en grandes déformations. Nous avons développé de nouvelles méthodes de mouvement de maillages pour aboutir à de grandes déformations de la structure. Enfin, une stratégie de complexification du problème d’IFS a été définie. La modélisation de la turbulence et des écoulements à surfaces libres ont été introduites et couplées à la résolution des équations de Navier-Stokes. Différentes simulations numériques sont présentées pour illustrer l’efficacité et la robustesse de l’algorithme. Les résultats numériques présentés attestent de la validité et l’efficacité des méthodes numériques développées.