976 resultados para Modulation.
Resumo:
In this paper, we propose a sparse signal modulation (SSM) method for precoded orthogonal frequency division multiplexing (OFDM) systems and study the signal detection. Although a receiver is able to exploit a path diversity gain with random precoding in OFDM, the complexity of the receiver is usually high as the orthogonality is not retained due to precoding. However, with SSM, we can derive a low-complexity detector that can provide reasonably good performances with a low sparsity ratio based on the notion of compressive sensing (CS). An important feature of a CS detector is that it can estimate SSM signals with a small fraction of the received signals over sub-carriers. This feature can allow us to build a low cost receiver with a small number of demodulators.
Resumo:
An orthogonal vector approach is proposed for the synthesis of multi-beam directional modulation (DM) transmitters. These systems have the capability of concurrently projecting independent data streams into different specified spatial directions while simultaneously distorting signal constellations in all other directions. Simulated bit error rate (BER) spatial distributions are presented for various multi-beam system configurations in order to illustrate representative examples of physical layer security performance enhancement that can be achieved.
Resumo:
A 10 GHz Fourier Rotman lens enabled dynamic directional modulation (DM) transmitter is experimentally evaluated. Bit error rate (BER) performance is obtained via real-time data transmission. It is shown that Fourier Rotman DM functionality enhances system security performance in terms of narrower decodable low BER region and higher BER values associated with BER sidelobes especially under high signal to noise ratio (SNR) scenarios. This enhancement is achieved by controlled corruption of constellation diagrams in IQ space by orthogonal injection of interference. Furthermore, the paper gives the first report of a functional dual-beam DM transmitter, which has the capability of simultaneously projecting two independent data streams into two different spatial directions while simultaneously scrambling the information signals along all other directions.
Resumo:
This article shows practical results of a self-tracking receiving antenna array using a new phase locked loop (PLL) tracking configuration. The PLL configuration differs from other architectures, as it has the new feature of being able to directly track phase modulated signals without requiring an additional unmodulated pilot carrier to be present. The PLLs are used within the antenna array to produce a constant phase intermediate frequency (IF) for each antenna element. These IF's can then be combined in phase, regardless of the angle of arrival of the signal, thus utilizing the antennas array factor. The article's main focus is on the phase jitter performance of the modulation insensitive PLL carrier recovery when tracking phase modulated signals of low signal to noise ratio. From this analysis, it is concluded that the new architecture, when optimally designed, can produce phase jitter performance close to that of a conventional tracking PLL.
Resumo:
A semirelativistic fluid model is employed to describe the nonlinear amplitude modulation of low-frequency (ionic scale) electrostatic waves in an unmagnetized electron-positron-ion plasma. Electrons and positrons are assumed to be degenerated and inertialess, whereas ions are warm and classical. A multiscale perturbation method is used to derive a nonlinear Schrödinger equation for the envelope amplitude, based on which the occurrence of modulational instability is investigated in detail. Various types of localized ion acoustic excitations are shown to exist, in the form of either bright type envelope solitons (envelope pulses) or dark-type envelope solitons (voids, holes). The plasma configurational parameters (namely, the relativistic degeneracy parameter, the positron concentration, and the ionic temperature) are shown to affect the conditions for modulational instability significantly, in fact modifying the associated threshold as well as the instability growth rate. In particular, the relativistic degeneracy parameter leads to an enhancement of the modulational instability mechanism. Furthermore, the effect of different relevant plasma parameters on the characteristics (amplitude, width) of these envelope solitary structures is also presented in detail. Finally, the occurrence of extreme amplitude excitation (rogue waves) is also discussed briefly. Our results aim at elucidating the formation and dynamics of nonlinear electrostatic excitations in superdense astrophysical regimes.
Resumo:
A digital directional modulation (DM) transmitter structure is proposed from a practical implementation point of view in this paper. This digital DM architecture is built with the help of several off-the-shelf physical layer wireless experiment platform hardware boards. When compared with previous analogue DM transmitter architectures, the digital means offers more precise and fast control on the updates of the array excitations. More importantly, it is an ideal physical arrangement to implement the most universal DM synthesis algorithm, i.e., the orthogonal vector approach. The practical issues in digital DM system calibrations are described and solved. The bit error rates (BERs) are measured via real-time data transmissions to illustrate the DM advantages, in terms of secrecy performance, over conventional non-DM beam-steering transmitters.
Resumo:
BACKGROUND: LuxS may function as a metabolic enzyme or as the synthase of a quorum sensing signalling molecule, auto-inducer-2 (AI-2); hence, the mechanism underlying phenotypic changes upon luxS inactivation is not always clear. In Helicobacter pylori, we have recently shown that, rather than functioning in recycling methionine as in most bacteria, LuxS (along with newly-characterised MccA and MccB), synthesises cysteine via reverse transsulphuration. In this study, we investigated whether and how LuxS controls motility of H. pylori, specifically if it has its effects via luxS-required cysteine metabolism or via AI-2 synthesis only.
RESULTS: We report that disruption of luxS renders H. pylori non-motile in soft agar and by microscopy, whereas disruption of mccAHp or mccBHp (other genes in the cysteine provision pathway) does not, implying that the lost phenotype is not due to disrupted cysteine provision. The motility defect of the DeltaluxSHp mutant was complemented genetically by luxSHp and also by addition of in vitro synthesised AI-2 or 4, 5-dihydroxy-2, 3-pentanedione (DPD, the precursor of AI-2). In contrast, exogenously added cysteine could not restore motility to the DeltaluxSHp mutant, confirming that AI-2 synthesis, but not the metabolic effect of LuxS was important. Microscopy showed reduced number and length of flagella in the DeltaluxSHp mutant. Immunoblotting identified decreased levels of FlaA and FlgE but not FlaB in the DeltaluxSHp mutant, and RT-PCR showed that the expression of flaA, flgE, motA, motB, flhA and fliI but not flaB was reduced. Addition of DPD but not cysteine to the DeltaluxSHp mutant restored flagellar gene transcription, and the number and length of flagella.
CONCLUSIONS: Our data show that as well as being a metabolic enzyme, H. pylori LuxS has an alternative role in regulation of motility by modulating flagellar transcripts and flagellar biosynthesis through production of the signalling molecule AI-2.
Resumo:
Directional modulation (DM) is an emerging technology for securing wireless communications at the physical layer. This promising technology, unlike the conventional key-based cryptographic methods and the key-based physical layer security approaches, locks information signals without any requirements of keys. The locked information can only be fully recovered by the legitimate receiver(s) priory known by DM transmitters. This paper reviews the origin of the DM concept and, particularly, its development in recent years, including its mathematical model, assessment metrics, synthesis approaches, physical realizations, and finally its potential aspects for future studies.