971 resultados para Metal-semiconductor field effect transistor (MESFET)
Resumo:
The interfaces formed between copper-hexadecafluoro-phthalocyanine (F16CuPc) and 2,5-bis(4-biphenylyl) bithiophene (BP2T) were examined using photoemission and inverse photoemission spectroscopy. It is observed that in F16CuPc/BP2T the heterojunction is characterized by band bending in both materials, while in BP2T/F16CuPc the band bending is confined in BP2T only. The combination of the band bending and finite Debye lengths provides an explanation to the observed ambipolar behavior of the organic thin film transistors based on such heterojunctions.
Resumo:
Thin films of phthalocyanine compounds show weak epitaxial growth on a monodomain film of a rod-like molecule (see figure). The resulting organic electronic devices exhibit high charge carrier mobilities close to those of the single-crystal devices.
Resumo:
Pentacene thin-film transistors have been obtained using polymethyl-methacrylate-co-glyciclyl-methacrylate (PNIMA-GMA) as the gate dielectric. The optimum active layer thickness in thin-film transistors (OTFTs) was investigated. The present devices show a wide operation voltage range. The on/off current ratio is as high as 10(5). In linear region (V-DS = -2V), the field-effect mobility of device increases with the increase in gate field at low-voltage region (V-G < - 20 V), and a mobility of 0.33 cm(2)/Vs can be obtained when V-G > 20 V. In saturation region, the mobility increases linearly with the gate field, and a high mobility of 1.14 cm(2)/Vs can be obtained at V-G = -95V. The influence of voltage on mobility of device was investigated.
Resumo:
Bottom-contact organic thin-film transistors (BC OTFTs) based on inorganic/organic double gate insulators were demonstrated. The double gate insulators consisted of tantalum pentoxide (Ta2O5) with high dielectric constant (kappa) as the first gate insulator and octadecyltrichlorosilane (OTS) with low kappa as the second gate insulator. The devices have carrier mobilities larger than 10(-2) cm(2)/V s, on/off current ratio greater than 10(5), and the threshold voltage of -14 V, which is threefold larger field-effect mobility and an order of magnitude larger on/off current ratio than the OTFTs with a Ta2O5 gate insulator. The leakage current was decreased from 2.4x10(-6) to 7.4x10(-8) A due to the introduction of the OTS second dielectric layer. The results demonstrated that using inorganic/organic double insulator as the gate dielectric layer is an effective method to fabricate OTFTs with improved electric characteristics.
Resumo:
Organic thin-film transistors (OTFTs) having source/drain electrodes sandwiched between copper phthalocyanine (CuPc) and cobalt phthalocyanine (CoPc) layers, CuPc/CoPc SC OTFTs, are investigated. Comparing their properties with that of CuPc-based top-contact OTFT, field-effect mobility increases from 0.04 to 0.11 cm(2)/Vs, threshold voltage shifts from -13.8 to -8.9 V, and the current on/off ratio maintains at a level of 10(5). A top-contact OTFT with a layer of CuPc and a layer of CoPc (10%)-CuPc mixture reveals that the combination of CuPc and CoPc enhances charge injection from the source electrode into the active layer and increases the off-state current. The sandwich configuration increases the field-effect mobility, reduce the threshold voltage, and improve the on/off ratio at the same time. Our results indicate that using a double-layer of active organic materials in sandwich configuration is an effective way to improve OTFT performance.
Resumo:
Ambipolar organic field-effect transistors (OFETs) are produced, based on organic heterojunctions fabricated by a two-step vacuum-deposition process. Copper phthalocyanine (CuPc) deposited at a high temperature (250 degrees C) acts as the first (p-type component) layer, and hexadecafluorophthalocyaninatocopper (F16CuPc) deposited at room temperature (25 degrees C) acts as the second (n-type component) layer. A heterojunction with an interpenetrating network is obtained as the active layer for the OFETs. These heterojunction devices display significant ambipolar charge transport with symmetric electron and hole mobilities of the order of 10(-4) cm(2) V-1 s(-1) in air. Conductive channels are at the interface between the F16CuPc and CuPc domains in the interpenetrating networks. Electrons are transported in the F16CuPc regions, and holes in the CuPc regions. The molecular arrangement in the heterojunction is well ordered, resulting in a balance of the two carrier densities responsible for the ambipolar electrical characteristics. The thin-film morphology of the organic heterojunction with its interpenetrating network structure can be controlled well by the vacuum-deposition process.
Resumo:
N-type organic thin-film transistors (OTFTs) employing hexadecafluorophthalocyaninatocopper (F16CuPc) as active layer and p-type copper phthalocyanine (CuPc) as buffer layer are demonstrated. The highest field-effect mobility is 7.6x10(-2) cm(2)/V s. The improved performance was attributed to the decrease of contact resistance due to the introduction of highly conductive F16CuPc/CuPc organic heterojunction. Therefore, current method provides an effective path to improve the performance of OTFTs.
Resumo:
Electronic structures of the heterojunction between copper phthalocyanine (CuPc) and copper hexadecafluorophthalocyanine (F16CuPc) were studied with ultraviolet photoemission spectroscopy. Band bending and an interface dipole were observed at the interface due to the formation of an electron accumulation layer and a depletion layer in F16CuPc and CuPc, respectively. Such an energy level alignment leads to interesting ambipolar characteristics for application of the CuPc/F16CuPc junction in organic field-effect transistors.
Resumo:
The device performances of copper phthalocyanine (CuPc)-based organic thin-film transistors (OTFTs) in main components of air were studied. We found that the device stored in O-2 humidified by water exhibited the changes of electric characteristics including positive-shifted threshold voltage and lower I-on/I-off but unchanged mobility, which was similar to the device exposed to room air. These changes are attributed to O-2 doping to copper phthalocyanine thin film assisted by water. Furthermore, a cross-linked polyvinyl alcohol film was used as encapsulation layer to prevent the permeation of O-2 and water, which resulted in excellent stability even when devices were placed in air for over a year. Therefore, current studies will push the development of OTFTs for practical applications.
Resumo:
Organic thin film transistors based on pentacene are fabricated by the method of full evaporation. The thickness of insulator film can be controlled accurately, which influences the device operation voltage markedly. Compared to the devices with a single-insulator layer, the electric performance of devices by using a double-insulator as the gate dielectric has good improvement. It is found that the gate leakage current can be reduced over one order of magnitude, and the on-state current can be enhanced over one order of magnitude. The devices with double-insulator layer exhibit field-effect mobility as large as 0.14 cm(2)/Vs and near the zero threshold voltage. The results demonstrate that using proper double insulator as the gate dielectrics is an effective method to fabricate OTFTs with high electrical performance.
Resumo:
Secondary and tertiary or quaternary structural changes in hemoglobin (HB) during an electroreduction process were studied by in situ circular dichroism (CD) spectroelectrochemistry with a long optical path thin-layer cell. By means of singular value decomposition least-squares analysis, CD spectra in the far-UV region give two similar a components with different CD intensity, indicating slight denaturation in the secondary structures due to the electric field effect. CD spectra in the Soret band show a R --> T transition of two quaternary structural components induced by electroreduction of the heme, which changes the redox states of the center ion from Fe3+ to Fe2+ and the coordination number from 6 to 5. The double logarithmic analysis shows that electroreduction of hemoglobin follows a chemical reaction with R --> T transition. Some parameters in the electrochemical process were obtained: formal potential, E-0t = -0.167 V; electrochemical kinetic overpotential, DeltaE(0) = -0.32 V; standard electrochemical reaction rate constant, k(0) = 1.79 x 10(-5) cm s(-1); product of electron transfer coefficient and electron number, alphan=0.14; and the equilibrium constant of R --> T transition, K-c = 9.0.
Resumo:
The CSAMT method is playing an important role in the exploration of geothermal and the pre-exploration in tunnel construction project recently. In order to instruct the interpretation technique for the field data, the forward method from ID to 3D and inversion method in ID and 2D are developed in this paper for the artificial source magnetotelluric in frequency domain. In general, the artificial source data are inverted only after the near field is corrected on the basis of the assumption of half-homogeneous space; however, this method is not suitable for the complex structure because the assumption is not valid any more. Recently the new idea about inversion scheme without near field correction is published in order to avoid the near field correction error. We try to discuss different inversion scheme in ID and 2D using the data without near field correction.The numerical integration method is used to do the forward modeling in ID CSAMT method o The infinite line source is used in the 2D finite-element forward modeling, where the near-field effect is occurred as in the CSAMT method because of using artificial source. The pseudo-delta function is used to modeling the source distribution, which reduces the singularity when solving the finite-element equations. The effect on the exploration area is discussed when anomalous body exists under the source or between the source and exploration area; A series of digital test show the 2D finite element method are correct, the results of modeling has important significant for CSAMT data interpretation. For 3D finite-element forward modeling, the finite-element equation is derived by Galerkin method and the divergence condition is add forcedly to the forward equation, the forward modeling result of the half homogeneous space model is correct.The new inversion idea without near field correction is followed to develop new inversion methods in ID and 2D in the paper. All of the inversion schemes use the data without near field correction, which avoid introducing errors caused by near field correction. The modified grid parameter method and the layer-by-layer inversion method are joined in the ID inversion scheme. The RRI method with artificial source are developed and finite-element inversion method are used in 2D inversion scheme. The inversion results using digital data and the field data are accordant to the model and the known geology data separately, which means the inversion without near field correction is accessible. The feasibility to invert the data only in exploration area is discussed when the anomalous body exists between the source and the exploration area.
Resumo:
A novel Lorenz-type system of nonlinear differential equations is proposed. Unlike the original Lorenz system, where the chaotic dynamics remain confined to the positive half-space with respect to the Z state variable due to a limiting threshold effect, the proposed system enables bipolar swing of this state variable. In addition, the classical set of parameters (a, b, c) controlling the behavior of the Lorenz system are reduced to a single parameter, namely a. Two possible modes of operation are admitted by the system; switching between these two modes results in the creation of a complex butterfly chaotic attractor. Numerical simulations and results from an experimental setup are presented
Resumo:
The synthesis of a number of new 2,2'-bipyridine ligands, functionalized with bulky ester side groups is reported (L2 - L8). Their reaction with [Ru(DMSO)4Cl2] gives rise to tris-chelate ruthenium(II) metal complexes which show an unusually high proportion of the fac-isomer, as judged by 1H NMR following conversion to the ruthenium(II) complex of 2,2'-bipyridine-5-carboxylic acid methyl ester (L1). The initial reaction appears to have thermodynamic control with the steric bulk of the ligands causing the third ligand to be labile under the reaction conditions used, giving rise to disappointing yields and allowing rearrangement to the more stable facial form. DFT studies indicate that this does not appear to be as a consequence of a metal centered electronic effect. The two isomers of [Ru(L1)3](PF6)2 were separated into the two individual forms using silica preparative plate chromatographic procedures, and the photophysical characteristics of the two forms compared. The results appear to indicate that there is no significant difference in both their room temperature electronic absorption and emission spectra or their excited state lifetimes at 77K.
Resumo:
We investigated the sensitivity of low-frequency electrical measurements to microbe-induced metal sulfide precipitation. Three identical sand-packed monitoring columns were used; a geochemical column, an electrical column and a control column. In the first experiment, continuous upward flow of nutrients and metals in solution was established in each column. Cells of Desulfovibrio vulgaris (D. vulgaris) were injected into the center of the geochemical and electrical columns. Geochemical sampling and post-experiment destructive analysis showed that microbial induced sulfate reduction led to metal precipitation on bacteria cells, forming motile biominerals. Precipitation initially occurred in the injection zone, followed by chemotactic migration of D. vulgaris and ultimate accumulation around the nutrient source at the column base. Results from this experiment conducted with metals show (1) polarization anomalies, up to 14 mrad, develop at the bacteria injection and final accumulation areas, (2) the onset of polarization increase occurs concurrently with the onset of lactate consumption, (3) polarization profiles are similar to calculated profiles of the rate of lactate consumption, and (4) temporal changes in polarization and conduction correlate with a geometrical rearrangement of metal-coated bacterial cells. In a second experiment, the same biogeochemical conditions were established except that no metals were added to the flow solution. Polarization anomalies were absent when the experiment was replicated without metals in solution. We therefore attribute the polarization increase observed in the first experiment to a metal-fluid interfacial mechanism that develops as metal sulfides precipitate onto microbial cells and form biominerals. Temporal changes in polarization and conductivity reflect changes in (1) the amount of metal-fluid interfacial area, and (2) the amount of electronic conduction resulting from microbial growth, chemotactic movement and final coagulation. This polarization is correlated with the rate of microbial activity inferred from the lactate concentration gradient, probably via a common total metal surface area effect.