999 resultados para MAGNETIZED NONUNIFORM PLASMA
Resumo:
应用电压传感器、光电倍增管及水冷皮托管,对产生射入空气中的纯氩层流和湍流等离子体射流的弧电压波动、发生器出口处的射流光强波动以及沿射流轴线的滞止压力波动进行了测量。结果显示层流等离子体射流各参数的波动幅度远小于湍流射流的对应值;弧电压的波动幅度随气流量的变化明显,但随电流的变化很小;弧电压的波动幅度与其平均值之比随电流增加呈下降的趋势。
Resumo:
利用层流等离子体射流,以普通工程铁丝为喷涂材料,在Q235基体表面制备金属涂层,并利用喷涂系统的参数可调性研究工艺参数对涂层质量的影响。结果表明,利用层流等离子体射流喷涂可以得到具有典型层状结构、氧化较少的致密涂层。
Resumo:
In this paper, the calculated results about the propagation properties of electromagnetic wave in a plasma slab are described. The relationship of the propagation properties with frequencies of electromagnetic wave, and parameters of plasma (electron temperature, electron density, dimensionless collision frequency and the size of the plasma slab) is analyzed.
Resumo:
Amorphous [Al-Si-O] coatings were deposited on aluminum alloy by plasma electrolytic oxidation (PEO). The process parameters, composition, micrograph, and mechanical property of PEO amorphous coatings were investigated. It is found that the growth rate of PEO coatings reaches 4.44 mu m/min if the current density is 0.9 mA/mm(2). XRD results show that the PEO coatings are amorphous in the current density range of 0.3-0.9 mA/mm(2). EDS results show that the coatings are composed of O, Si and At elements. SEM results show that the coatings are porous. Nano indentation results show that the hardness of the coatings is about 3 - 4 times of that of the substrate, while the elastic modulus is about the same with the substrate. Furthermore, a formation mechanism of amorphous PEO coatings was proposed.
Resumo:
This paper considers plasma-enhanced chemical vapor deposited (PECVD) silicon nitride (SiNx) and silicon oxide (SiOx) as gate dielectrics for organic thin-film transistors (OTFTs), with solution-processed poly[5, 5′ -bis(3-dodecyl-2-thienyl)-2, 2′ -bithiophene] (PQT-12) as the active semiconductor layer. We examine transistors with SiNx films of varying composition deposited at 300 °C as well as 150 °C for plastic compatibility. The transistors show over 100% (two times) improvement in field-effect mobility as the silicon content in SiNx increases, with mobility (μFE) up to 0.14 cm2 /V s and on/off current ratio (ION / IOFF) of 108. With PECVD SiOx gate dielectric, preliminary devices exhibit a μFE of 0.4 cm2 /V s and ION / IOFF of 108. PQT-12 OTFTs with PECVD SiNx and SiOx gate dielectrics on flexible plastic substrates are also presented. These results demonstrate the viability of using PECVD SiN x and SiOx as gate dielectrics for OTFT circuit integration, where the low temperature and large area deposition capabilities of PECVD films are highly amenable to integration of OTFT circuits targeted for flexible and lightweight applications. © 2008 American Institute of Physics.
Resumo:
Investigation of remelting and cladding processing with laminar plasma jets on several metals has been conducted looking for possible development of a new surface modification technique. The remelting tests illustrated that the new method could evidently improve the material microstructure and properties of cast iron. The cladding was done with Al2O3 ceramic powder on stainless steel. The energy dispersive spectra (EDS) analysis was used to determine the distribution of the major cladding element in the plasma-processed layers, for which the microstructure observations and hardness measurements were also performed.
Resumo:
Long, laminar plasma jets at atmospheric pressure of pure argon and a mixture of argon and nitrogen with jet length up to 45 fi,Hes its diameter could be generated with a DC are torch by! restricting the movement of arc root in the torch channel. Effects of torch structure, gas feeding, and characteristics of power supply on the length of plasma jets were experimentally examined. Plasma jets of considerable length and excellent stability could be obtained by regulating the generating parameters, including are channel geometry gas flow I ate, and feeding methods, etc. Influence of flow turbulence at the torch,nozzle exit on the temperature distribution of plasma jets was numerically simulated. The analysis indicated that laminar flow plasma with very low initial turbulent kinetic energy will produce a long jet, with low axial temperature gradient. This kind of long laminar plasma jet could greatly improve the controllability for materials processing, compared with a short turbulent are let.
Resumo:
Nano-sized TiNi powder with an average size of 50nm was consolidated using spark plasma sintering (SPS) at 800 °C for 5min. A layer of anatase TiO 2 coating was formed on the sintered TiNi by chemical reaction with a hydrogen peroxide (H2O2) solution at 60 °C followed by heat treatment at 400 °C to enhance the bioactivity of the metal surface. Cell culture using osteoblast cells and a biomimetic test in simulated body fluid proved the biocompatibility of the chemically treated SPS TiNi. © IOP Publishing Ltd.
Resumo:
The aim of this study was to investigate the effect of temperature on tribological properties of plasma-sprayed Al-Cu-Fe quasicrystal (QC) coating after laser re-melting treatment. The laser treatment resulted in a more uniform, denser and harder microstructure than that of the as-sprayed coatings. Tribological experiments on the coatings were conducted under reciprocating motion at high frequency in the temperature range from 25 to 650 degreesC. Remarkable influence of temperature on the friction behavior of the coating was recorded and analyzed. Microstructural analysis indicated that the wear mechanisms of the re-melted QC coatings changed from abrasive wear at room temperature, to adhesive wear at 400 degreesC and severe adhesive wear at 650 degreesC owing to the material transfer of the counterpart ball. It was also observed that the ratio of the icosahedral (i)-phase to beta-Al-50(Fe,CU)(50) phase in the coating was higher after test at 400 'C than that at 650 'C. The variation of the ratio UP of coating and of the property of the counterpart ball and coating with the temperature are the two main factors influencing the wear mechanisms and value of the friction coefficient.
Resumo:
The age-strengthening 2024 aluminum alloy was modified by a combination of plasma-based ion implantation (PBII) and solution-aging treatments. The depth profiles of the implanted layer were investigated by X-ray photoelectron spectroscopy (XPS). The structure was studied by glancing angle X-ray diffraction (GXRD). The variation of microhardness with the indenting depth was measured by a nanoindenter. The wear test was carried on with a pin-on-disk wear tester. The results revealed that when the aluminum alloys were implanted with nitrogen at the solution temperature, then quenched in the vacuum chamber followed by an artificial aging treatment for an appropriate time, the amount of AIN precipitates by the combined treatment were more than that of the specimen implanted at ambient temperature. Optimum surface mechanical properties were obtained. The surface hardness was increased and the weight loss in a wear test decreased too.
Resumo:
A compact electron cyclotron wave resonance (ECWR) source has been developed for the high rate deposition of hydrogenated tetrahedral amorphous carbon (ta-C:H). The ECWR provides growth rates of up to 1.5 nm/s over a 4-inch diameter and an independent control of the deposition rate and ion energy. The ta-C:H was deposited using acetylene as the source gas and was characterized as having an sp3 content of up to 77%, plasmon energy of 27 eV, refractive index of 2.45, hydrogen content of about 30%, optical gap of up to 2.1 eV and RMS surface roughness of 0.04 nm. © 1999 Elsevier Science S.A. All rights reserved.
Resumo:
A compact electron cyclotron wave resonance (ECWR) source has been developed for the high rate deposition of hydrogenated tetrahedral amorphous carbon (ta-C:H). The ECWR provides growth rates of up to 900 angstrom/min and an independent control of the deposition rate and ion energy. The ta-C:H was deposited using acetylene as the source gas and was characterized in terms of its bonding, stress and friction coefficient. The results indicated that the ta-C:H produced using this source fulfills the necessary requirements for applications requiring enhanced tribological performance.