847 resultados para Logic Separation
Resumo:
This article purposes the ARBot, a system that has as main objective the presentation of concepts of logic for students of elementary and secondary education. The system was developed using the technology known as Augmented Reality (AR), which allows complement the actual environment where the user is, by adding virtual objects. In this scenario the RA created from a virtual game interface is used, through which cognitive challenges are presented. To solve these challenges, users must set up three-dimensional virtual characters using visual language. As a result it follows that, in a playful way, concepts of algorithms and programming are assimilated by users. In addition, the system enables two users to interact in a cooperative game mode. In cooperative mode, the system focuses on collaborative learning, since it allows users to jointly solve the cognitive challenge presented by the system.
Resumo:
The fuzzy logic accepts infinite intermediate logical values between false and true. In view of this principle, a system based on fuzzy rules was established to provide the best management of Catasetum fimbriatum. For the input of the developed fuzzy system, temperature and shade variables were used, and for the output, the orchid vitality. The system may help orchid experts and amateurs to manage this species. ?Low? (L), ?Medium? (M) and ?High? (H) were used as linguistic variables. The objective of the study was to develop a system based on fuzzy rules to improve management of the Catasetum fimbriatum species, as its production presents some difficulties, and it offers high added value
Resumo:
Bone marrow is a source of stem cells for greater and easier access, which is widely studied as a provider of hematopoietic and mesenchymal cells for various purposes, mainly therapeutic by the advances in research involving cell therapy. The swine is an animal species commonly used in the pursuit of development of experimental models. Thus, this study aimed to standardize protocol for collection and separation of bone marrow in swines, since this species is widely used as experimental models for various diseases. Twelve animals were used, which underwent bone marrow puncture with access from the iliac crest and cell separation by density gradient followed by a viability test with an average of 98% of viable cells. Given our results, we can ensure the swine as an excellent model for obtaining and isolation of mononuclear cells from bone marrow, stimulating several studies addressing the field of cell therapy. Microsc. Res. Tech., 2012. (C) 2012 Wiley Periodicals, Inc.
Resumo:
A thin-layer electrochemical flow cell coupled to capillary electrophoresis with contactless conductivity detection (EC-CE-(CD)-D-4) was applied for the first time to the derivatization and quantification of neutral species using aliphatic alcohols as model compounds. The simultaneous electrooxidation of four alcohols (ethanol, 1-propanol, 1-butanol, and 1-pentanol) to the corresponding carboxylates was carried out on a platinum working electrode in acid medium. The derivatization step required 1 min at 1.6 V vs. Ag/AgCl under stopped flow conditions, which was preceded by a 10 s activation at 0 V. The solution close to the electrode surface was then hydrodynamically injected into the capillary, and a 2.5 min electrophoretic separation was carried out. The fully automated flow system operated at a frequency of 12 analyses per hour. Simultaneous determination of the four alcohols presented detection limits of about 5 x 10(-5) mol As a practical application with a complex matrix, ethanol concentrations were determined in diluted pale lager beer and in nonalcoholic beer. No statistically significant difference was observed between the EC-CE-(CD)-D-4 and gas chromatography with flame ionization detection (GC-FID) results for these samples. The derivatization efficiency remained constant over several hours of continuous operation with lager beer samples (n = 40).
Resumo:
Phase diagrams of poly(ethylene glycol)/polyacrylate/Na2SO4 systems have been investigated with respect to polymer size and pH. Plasmid DNA from Escherichia coil can depending on pH and polymer molecular weight be directed to a poly(ethylene glycol) or to a polyacrylate-rich phase in an aqueous two-phase system formed by these polymers. Bovine serum albumin (BSA) and E. coil homogenate proteins can be directed opposite to the plasmid partitioning in these systems. Two bioseparation processes have been developed where in the final step the pDNA is partitioned to a salt-rich phase giving a total process yield of 60-70%. In one of them the pDNA is partitioned between the polyacrylate and PEG-phases in order to remove proteins. In a more simplified process the plasmid is partitioned to a PEG-phase and back-extracted into a Na2SO4-rich phase. The novel polyacrylate/PEG system allows a strong change of the partitioning between the phases with relatively small changes in composition or pH. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Childhood protection is undergoing several changes. Our study aimed to outline the complex network of meanings which includes adoption as well as institutional and family foster care, by combining theory, research and practice. We investigated various contexts and protagonists: judicial system, foster institutions, birth parents, foster and adoptive parents, and families and their children. Diverse data collection procedures were used: socio-demographic investigations, case-studies, follow-ups, interviews, analysis of foster institutions and legal court documents. Results pointed to "invisibility" of birth family, frequent child (re)abuse, failures in the network of protection, meanings of "healthy family" and role of attachment concepts. Implications for social policies and social practices are discussed.
Resumo:
Large areas of Amazonian evergreen forest experience seasonal droughts extending for three or more months, yet show maximum rates of photosynthesis and evapotranspiration during dry intervals. This apparent resilience is belied by disproportionate mortality of the large trees in manipulations that reduce wet season rainfall, occurring after 2-3 years of treatment. The goal of this study is to characterize the mechanisms that produce these contrasting ecosystem responses. A mechanistic model is developed based on the ecohydrological framework of TIN (Triangulated Irregular Network)-based Real Time Integrated Basin Simulator + Vegetation Generator for Interactive Evolution (tRIBS+VEGGIE). The model is used to test the roles of deep roots and soil capillary flux to provide water to the forest during the dry season. Also examined is the importance of "root niche separation," in which roots of overstory trees extend to depth, where during the dry season they use water stored from wet season precipitation, while roots of understory trees are concentrated in shallow layers that access dry season precipitation directly. Observational data from the Tapajo's National Forest, Brazil, were used as meteorological forcing and provided comprehensive observational constraints on the model. Results strongly suggest that deep roots with root niche separation adaptations explain both the observed resilience during seasonal drought and the vulnerability of canopy-dominant trees to extended deficits of wet season rainfall. These mechanisms appear to provide an adaptive strategy that enhances productivity of the largest trees in the face of their disproportionate heat loads and water demand in the dry season. A sensitivity analysis exploring how wet season rainfall affects the stability of the rainforest system is presented. Citation: Ivanov, V. Y., L. R. Hutyra, S. C. Wofsy, J. W. Munger, S. R. Saleska, R. C. de Oliveira Jr., and P. B. de Camargo (2012), Root niche separation can explain avoidance of seasonal drought stress and vulnerability of overstory trees to extended drought in a mature Amazonian forest, Water Resour. Res., 48, W12507, doi:10.1029/2012WR011972.
Resumo:
The immobilization of metal nanoparticles in magnetic responsive solids allows the easy, fast, and clean separation of catalysts; however, the efficiency of this separation process depends on a strong metalsupport interaction. This interaction can be enhanced by functionalizing the support surface with amino groups. Our catalyst support contains an inner core of magnetite that enables the magnetic separation from liquid systems and an external surface of silica suitable for further modification with organosilanes. We report herein that a magnetically recoverable amino-functionalized support captured iridium species from liquid solutions and produced a highly active hydrogenation catalyst with negligible metal leaching. An analogous Ir0 catalyst prepared with use of a nonfunctionalized support shows a higher degree of metal leaching into the liquid products. The catalytic performance in the hydrogenation of alkenes is compared with that of Rh and Pt catalysts.
Resumo:
Fifteen species have been placed in Blattisocius Keegan of which only three were previously reported from Brazil. These mites are found in several different habitats and often mentioned as predators of pests of stored food. In this work, specimens of this genus collected from commercial dog food in Brazil were determined as a new species which is here described as Blattisocius everti n. sp. and the closely related Blattisocius keegani Fox, here redescribed. Subsequently, other specimens of Blattisocius deposited in the mite collection of "Departamento de Entomologia e Acarologia of Escola Superior de Agricultura "Luiz de Queiroz", Universidade de Sao Paulo" were examined and identified. Finally, a dichotomous key to separate the world species of Blattisocius was elaborated based on the examination of the specimens at hand and on the descriptions and redescriptions of other species.
Resumo:
The oil industry uses gas separators in production wells as the free gas present in the suction of the pump reduces the pumping efficiency and pump lifetime. Therefore, free gas is one of the most important variables in the design of pumping systems. However, in the literature there is little information on these separators. It is the case of the inverted-shroud gravitational gas separator. It has an annular geometry due to the installation of a cylindrical container in between the well casing and pioduction pipe (tubing). The purpose of the present study is to understand the phenomenology and behavior of inverted-shroud separator. Experimental tests were performed in a 10.5-m-length inclinable glass tube with air and water as working fluids. The water flow rate was in the range of 8.265-26.117 l/min and the average inlet air mass flow rate was 1.1041 kg/h, with inclination angles of 15 degrees, 30 degrees, 45 degrees, 60 degrees, 75 degrees, 80 degrees and 85 degrees. One of the findings is that the length between the inner annular level and production pipe inlet is one of the most important design parameters and based on that a new criterion for total gas separation is proposed. We also found that the phenomenology of the studied separator is not directly dependent on the gas flow rate, but on the average velocity of the free surface flow generated inside the separator. Maps of efficiency of gas separation were plotted and showed that liquid flow rate, inclination angle and pressure difference between casing and production pipe outlet are the main variables related to the gas separation phenomenon. The new data can be used for the development of design tools aiming to the optimized project of the pumping system for oil production in directional wells. (C) 2012 Elsevier Inc. All rights reserved.
Resumo:
Using giant unilamellar vesicles (GUVs) made from POPC. DPPC, cholesterol and a small amount of a porphyrin-based photosensitizer that we name PE-porph, we investigated the response of the lipid bilayer under visible light, focusing in the formation of domains during the lipid oxidation induced by singlet oxygen. This reactive species is generated by light excitation of PE-porf in the vicinity of the membrane, and thus promotes formation of hydroperoxides when unsaturated lipids and cholesterol are present. Using optical microscopy we determined the lipid compositions under which GUVs initially in the homogeneous phase displayed Lo-Ld phase separation following irradiation. Such an effect is attributed to the in situ formation of both hydroperoxized POPC and cholesterol. The boundary line separating homogeneous Lo phase and phase coexistence regions in the phase diagram is displaced vertically towards the higher cholesterol content in respect to ternary diagram of POPC:DPPC:cholesterol mixtures in the absence of oxidized species. Phase separated domains emerge from sub-micrometer initial sizes to evolve over hours into large Lo-Ld domains completely separated in the lipid membrane. This study provides not only a new tool to explore the kinetics of domain formation in mixtures of lipid membranes, but may also have implications in biological signaling of redox misbalance. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Travelling wave ion mobility mass spectrometry (TWIM-MS) with post-TWIM and pre-TWIM collision-induced dissociation (CID) experiments were used to form, separate and characterize protomers sampled directly from solutions or generated in the gas phase via CID. When in solution equilibria, these species were transferred to the gas phase via electrospray ionization, and then separated by TWIM-MS. CID performed after TWIM separation (post-TWIM) allowed the characterization of both protomers via structurally diagnostic fragments. Protonated aniline (1) sampled from solution was found to be constituted of a ca. 5:1 mixture of two gaseous protomers, that is, the N-protonated (1a) and ring protonated (1b) molecules, respectively. When dissociated, 1a nearly exclusively loses NH3, whereas 1b displays a much diverse set of fragments. When formed via CID, varying populations of 1a and 1b were detected. Two co-existing protomers of two isomeric porphyrins were also separated and characterized via post-TWIM CID. A deprotonated porphyrin sampled from a basic methanolic solution was found to be constituted predominantly of the protomer arising from deprotonation at the carboxyl group, which dissociates promptly by CO2 loss, but a CID-resistant protomer arising from deprotonation at a porphyrinic ring NH was also detected and characterized. The doubly deprotonated porphyrin was found to be constituted predominantly of a single protomer arising from deprotonation of two carboxyl groups. Copyright (C) 2012 John Wiley & Sons, Ltd.
Resumo:
The ever-growing production and the problematization of Environmental Health have shown the need to apprehend complex realities and deal with uncertainties from the most diversified instruments which may even incorporate local aspects and subjectivities by means of qualitative realities, while broadening the capacity of the information system. This paper presents a view on the reflection upon some challenges and possible convergences between the ecosystemic approach and the Fuzzy logic in the process of dealing with scientific information and decision-making in Environmental Health.
Resumo:
OBJECTIVE: This study proposes a new approach that considers uncertainty in predicting and quantifying the presence and severity of diabetic peripheral neuropathy. METHODS: A rule-based fuzzy expert system was designed by four experts in diabetic neuropathy. The model variables were used to classify neuropathy in diabetic patients, defining it as mild, moderate, or severe. System performance was evaluated by means of the Kappa agreement measure, comparing the results of the model with those generated by the experts in an assessment of 50 patients. Accuracy was evaluated by an ROC curve analysis obtained based on 50 other cases; the results of those clinical assessments were considered to be the gold standard. RESULTS: According to the Kappa analysis, the model was in moderate agreement with expert opinions. The ROC analysis (evaluation of accuracy) determined an area under the curve equal to 0.91, demonstrating very good consistency in classifying patients with diabetic neuropathy. CONCLUSION: The model efficiently classified diabetic patients with different degrees of neuropathy severity. In addition, the model provides a way to quantify diabetic neuropathy severity and allows a more accurate patient condition assessment.
Resumo:
Due to the growing interest in social networks, link prediction has received significant attention. Link prediction is mostly based on graph-based features, with some recent approaches focusing on domain semantics. We propose algorithms for link prediction that use a probabilistic ontology to enhance the analysis of the domain and the unavoidable uncertainty in the task (the ontology is specified in the probabilistic description logic crALC). The scalability of the approach is investigated, through a combination of semantic assumptions and graph-based features. We evaluate empirically our proposal, and compare it with standard solutions in the literature.