944 resultados para Liapunov convexity theorem
Resumo:
Let L be a finite geometric lattice of dimension n, and let w(k) denote the number of elements in L of rank k. Two theorems about the numbers w(k) are proved: first, w(k) ≥ w(1) for k = 2, 3, ..., n-1. Second, w(k) = w(1) if and only if k = n-1 and L is modular. Several corollaries concerning the "matching" of points and dual points are derived from these theorems.
Both theorems can be regarded as a generalization of a theorem of de Bruijn and Erdös concerning ʎ= 1 designs. The second can also be considered as the converse to a special case of Dilworth's theorem on finite modular lattices.
These results are related to two conjectures due to G. -C. Rota. The "unimodality" conjecture states that the w(k)'s form a unimodal sequence. The "Sperner" conjecture states that a set of non-comparable elements in L has cardinality at most max/k {w(k)}. In this thesis, a counterexample to the Sperner conjecture is exhibited.
Resumo:
If R is a ring with identity, let N(R) denote the Jacobson radical of R. R is local if R/N(R) is an artinian simple ring and ∩N(R)i = 0. It is known that if R is complete in the N(R)-adic topology then R is equal to (B)n, the full n by n matrix ring over B where E/N(E) is a division ring. The main results of the thesis deal with the structure of such rings B. In fact we have the following.
If B is a complete local algebra over F where B/N(B) is a finite dimensional normal extension of F and N(B) is finitely generated as a left ideal by k elements, then there exist automorphisms gi,...,gk of B/N(B) over F such that B is a homomorphic image of B/N[[x1,…,xk;g1,…,gk]] the power series ring over B/N(B) in noncommuting indeterminates xi, where xib = gi(b)xi for all b ϵ B/N.
Another theorem generalizes this result to complete local rings which have suitable commutative subrings. As a corollary of this we have the following. Let B be a complete local ring with B/N(B) a finite field. If N(B) is finitely generated as a left ideal by k elements then there exist automorphisms g1,…,gk of a v-ring V such that B is a homomorphic image of V [[x1,…,xk;g1,…,gk]].
In both these results it is essential to know the structure of N(B) as a two sided module over a suitable subring of B.
Resumo:
In a paper published in 1961, L. Cesari [1] introduces a method which extends certain earlier existence theorems of Cesari and Hale ([2] to [6]) for perturbation problems to strictly nonlinear problems. Various authors ([1], [7] to [15]) have now applied this method to nonlinear ordinary and partial differential equations. The basic idea of the method is to use the contraction principle to reduce an infinite-dimensional fixed point problem to a finite-dimensional problem which may be attacked using the methods of fixed point indexes.
The following is my formulation of the Cesari fixed point method:
Let B be a Banach space and let S be a finite-dimensional linear subspace of B. Let P be a projection of B onto S and suppose Г≤B such that pГ is compact and such that for every x in PГ, P-1x∩Г is closed. Let W be a continuous mapping from Г into B. The Cesari method gives sufficient conditions for the existence of a fixed point of W in Г.
Let I denote the identity mapping in B. Clearly y = Wy for some y in Г if and only if both of the following conditions hold:
(i) Py = PWy.
(ii) y = (P + (I - P)W)y.
Definition. The Cesari fixed paint method applies to (Г, W, P) if and only if the following three conditions are satisfied:
(1) For each x in PГ, P + (I - P)W is a contraction from P-1x∩Г into itself. Let y(x) be that element (uniqueness follows from the contraction principle) of P-1x∩Г which satisfies the equation y(x) = Py(x) + (I-P)Wy(x).
(2) The function y just defined is continuous from PГ into B.
(3) There are no fixed points of PWy on the boundary of PГ, so that the (finite- dimensional) fixed point index i(PWy, int PГ) is defined.
Definition. If the Cesari fixed point method applies to (Г, W, P) then define i(Г, W, P) to be the index i(PWy, int PГ).
The three theorems of this thesis can now be easily stated.
Theorem 1 (Cesari). If i(Г, W, P) is defined and i(Г, W, P) ≠0, then there is a fixed point of W in Г.
Theorem 2. Let the Cesari fixed point method apply to both (Г, W, P1) and (Г, W, P2). Assume that P2P1=P1P2=P1 and assume that either of the following two conditions holds:
(1) For every b in B and every z in the range of P2, we have that ‖b=P2b‖ ≤ ‖b-z‖
(2)P2Г is convex.
Then i(Г, W, P1) = i(Г, W, P2).
Theorem 3. If Ω is a bounded open set and W is a compact operator defined on Ω so that the (infinite-dimensional) Leray-Schauder index iLS(W, Ω) is defined, and if the Cesari fixed point method applies to (Ω, W, P), then i(Ω, W, P) = iLS(W, Ω).
Theorems 2 and 3 are proved using mainly a homotopy theorem and a reduction theorem for the finite-dimensional and the Leray-Schauder indexes. These and other properties of indexes will be listed before the theorem in which they are used.
Resumo:
This investigation deals with certain generalizations of the classical uniqueness theorem for the second boundary-initial value problem in the linearized dynamical theory of not necessarily homogeneous nor isotropic elastic solids. First, the regularity assumptions underlying the foregoing theorem are relaxed by admitting stress fields with suitably restricted finite jump discontinuities. Such singularities are familiar from known solutions to dynamical elasticity problems involving discontinuous surface tractions or non-matching boundary and initial conditions. The proof of the appropriate uniqueness theorem given here rests on a generalization of the usual energy identity to the class of singular elastodynamic fields under consideration.
Following this extension of the conventional uniqueness theorem, we turn to a further relaxation of the customary smoothness hypotheses and allow the displacement field to be differentiable merely in a generalized sense, thereby admitting stress fields with square-integrable unbounded local singularities, such as those encountered in the presence of focusing of elastic waves. A statement of the traction problem applicable in these pathological circumstances necessitates the introduction of "weak solutions'' to the field equations that are accompanied by correspondingly weakened boundary and initial conditions. A uniqueness theorem pertaining to this weak formulation is then proved through an adaptation of an argument used by O. Ladyzhenskaya in connection with the first boundary-initial value problem for a second-order hyperbolic equation in a single dependent variable. Moreover, the second uniqueness theorem thus obtained contains, as a special case, a slight modification of the previously established uniqueness theorem covering solutions that exhibit only finite stress-discontinuities.
Resumo:
The matrices studied here are positive stable (or briefly stable). These are matrices, real or complex, whose eigenvalues have positive real parts. A theorem of Lyapunov states that A is stable if and only if there exists H ˃ 0 such that AH + HA* = I. Let A be a stable matrix. Three aspects of the Lyapunov transformation LA :H → AH + HA* are discussed.
1. Let C1 (A) = {AH + HA* :H ≥ 0} and C2 (A) = {H: AH+HA* ≥ 0}. The problems of determining the cones C1(A) and C2(A) are still unsolved. Using solvability theory for linear equations over cones it is proved that C1(A) is the polar of C2(A*), and it is also shown that C1 (A) = C1(A-1). The inertia assumed by matrices in C1(A) is characterized.
2. The index of dissipation of A was defined to be the maximum number of equal eigenvalues of H, where H runs through all matrices in the interior of C2(A). Upper and lower bounds, as well as some properties of this index, are given.
3. We consider the minimal eigenvalue of the Lyapunov transform AH+HA*, where H varies over the set of all positive semi-definite matrices whose largest eigenvalue is less than or equal to one. Denote it by ψ(A). It is proved that if A is Hermitian and has eigenvalues μ1 ≥ μ2…≥ μn ˃ 0, then ψ(A) = -(μ1-μn)2/(4(μ1 + μn)). The value of ψ(A) is also determined in case A is a normal, stable matrix. Then ψ(A) can be expressed in terms of at most three of the eigenvalues of A. If A is an arbitrary stable matrix, then upper and lower bounds for ψ(A) are obtained.
Resumo:
Optical properties of a two-dimensional square-lattice photonic crystal are systematically investigated within the partial bandgap through anisotropic characteristics analysis and numerical simulation of field pattern. Using the plane-wave expansion method and Hellmann-Feynman theorem, the relationships between the incident and refracted angles for both phase and group velocities are calculated to analyze light propagation from air to photonic crystals. Three kinds of flat slab focusing are summarized and demonstrated by numerical simulations using the multiple scattering method. (c) 2007 Optical Society of America
Resumo:
Quantum information provides fundamentally different computational resources than classical information. We prove that there is no unitary protocol able to add unknown quantum states belonging to different Hilbert spaces. This is an inherent restriction of quantum physics that is related to the impossibility of copying an arbitrary quantum state, i.e., the no-cloning theorem. Moreover, we demonstrate that a quantum adder, in absence of an ancillary system, is also forbidden for a known orthonormal basis. This allows us to propose an approximate quantum adder that could be implemented in the lab. Finally, we discuss the distinct character of the forbidden quantum adder for quantum states and the allowed quantum adder for density matrices.
Resumo:
A new coupled fixed point theorem related to the Pata contraction for mappings having the mixed monotone property in partially ordered complete metric spaces is established. It is shown that the coupled fixed point can be unique under some extra suitable conditions involving mid point lower or upper bound properties. Also the corresponding convergence rate is estimated when the iterates of our function converge to its coupled fixed point.
Resumo:
Atualmente, existem modelos matemáticos capazes de preverem acuradamente as relações entre propriedades de estado; e esta tarefa é extremamente importante no contexto da Engenharia Química, uma vez que estes modelos podem ser empregados para avaliar a performance de processos químicos. Ademais, eles são de fundamental importância para a simulação de reservatórios de petróleo e processos de separação. Estes modelos são conhecidos como equações de estado, e podem ser usados em problemas de equilíbrios de fases, principalmente em equilíbrios líquido-vapor. Recentemente, um teorema matemático foi formulado (Teorema de Redução), fornecendo as condições para a redução de dimensionalidade de problemas de equilíbrios de fases para misturas multicomponentes descritas por equações de estado cúbicas e regras de mistura e combinação clássicas. Este teorema mostra como para uma classe bem definidade de modelos termodinâmicos (equações de estado cúbicas e regras de mistura clássicas), pode-se reduzir a dimensão de vários problemas de equilíbrios de fases. Este método é muito vantajoso para misturas com muitos componentes, promovendo uma redução significativa no tempo de computação e produzindo resultados acurados. Neste trabalho, apresentamos alguns experimentos numéricos com misturas-testes usando a técnica de redução para obter pressões de ponto de orvalho sob especificação de temperaturas.
Resumo:
131 p.
Resumo:
We propose a bio-inspired sequential quantum protocol for the cloning and preservation of the statistics associated to quantum observables of a given system. It combines the cloning of a set of commuting observables, permitted by the no-cloning and no-broadcasting theorems, with a controllable propagation of the initial state coherences to the subsequent generations. The protocol mimics the scenario in which an individual in an unknown quantum state copies and propagates its quantum information into an environment of blank qubits Finally, we propose a realistic experimental implementation of this protocol in trapped ions.
Resumo:
In the present study, variation in the morphology of the lower pharyngeal element between two Sicilian populations of the rainbow wrasse Coris julis has been explored by the means of traditional morphometrics for size and geometric morphometrics for shape. Despite close geographical distance and probable high genetic flow between the populations, statistically significant differences have been found both for size and shape. In fact, one population shows a larger lower pharyngeal element that has a larger central tooth. Compared to the other population, this population also has medially enlarged lower pharyngeal jaws with a more pronounced convexity of the medial-posterior margin. The results are discussed in the light of a possible more pronounced durophagy of this population.
Resumo:
A pivotal problem in Bayesian nonparametrics is the construction of prior distributions on the space M(V) of probability measures on a given domain V. In principle, such distributions on the infinite-dimensional space M(V) can be constructed from their finite-dimensional marginals---the most prominent example being the construction of the Dirichlet process from finite-dimensional Dirichlet distributions. This approach is both intuitive and applicable to the construction of arbitrary distributions on M(V), but also hamstrung by a number of technical difficulties. We show how these difficulties can be resolved if the domain V is a Polish topological space, and give a representation theorem directly applicable to the construction of any probability distribution on M(V) whose first moment measure is well-defined. The proof draws on a projective limit theorem of Bochner, and on properties of set functions on Polish spaces to establish countable additivity of the resulting random probabilities.
Resumo:
The application of Bayes' Theorem to signal processing provides a consistent framework for proceeding from prior knowledge to a posterior inference conditioned on both the prior knowledge and the observed signal data. The first part of the lecture will illustrate how the Bayesian methodology can be applied to a variety of signal processing problems. The second part of the lecture will introduce the concept of Markov Chain Monte-Carlo (MCMC) methods which is an effective approach to overcoming many of the analytical and computational problems inherent in statistical inference. Such techniques are at the centre of the rapidly developing area of Bayesian signal processing which, with the continual increase in available computational power, is likely to provide the underlying framework for most signal processing applications.
Resumo:
Acoustic radiation from a spherical source undergoing angularly periodic axisymmetric harmonic surface vibrations while eccentrically suspended within a thermoviscous fluid sphere, which is immersed in a viscous thermally conducting unbounded fluid medium, is analyzed in an exact fashion. The formulation uses the appropriate wave-harmonic field expansions along with the translational addition theorem for spherical wave functions and the relevant boundary conditions to develop a closed-form solution in form of infinite series. The analytical results are illustrated with a numerical example in which the vibrating source is eccentrically positioned within a chemical fluid sphere submerged in water. The modal acoustic radiation impedance load on the source and the radiated far-field pressure are evaluated and discussed for representative values of the parameters characterizing the system. The proposed model can lead to a better understanding of dynamic response of an underwater acoustic lens. It is equally applicable in miniature transducer analysis and design with applications in medical ultrasonics.