956 resultados para Language Models
Resumo:
Thirty-five years ago, a landmark article entitled 'What The "Good Language Learner" Can Teach Us' suggested that if more was known about what 'successful learners' did, then those strategies could be taught to poorer learners to enhance learning (Rubin, 1975, p. 42). Since publication of Rubin's article, language instruction has begun to encompass technological applications (Chinnery, 2006) through mobile-assisted language learning (MALL or m-learning) like podcasts. Podcasting extends the classroom, offers convenience for diverse learners, and provides authentic listening opportunities. Although the effects of podcasting in higher education have yet to be investigated (Educause, 2007), this article describes how action research lead to the creation of a student learning strategy webpage featuring peer podcasts and successful language learning strategies in higher education.
Resumo:
Log-linear and maximum-margin models are two commonly-used methods in supervised machine learning, and are frequently used in structured prediction problems. Efficient learning of parameters in these models is therefore an important problem, and becomes a key factor when learning from very large data sets. This paper describes exponentiated gradient (EG) algorithms for training such models, where EG updates are applied to the convex dual of either the log-linear or max-margin objective function; the dual in both the log-linear and max-margin cases corresponds to minimizing a convex function with simplex constraints. We study both batch and online variants of the algorithm, and provide rates of convergence for both cases. In the max-margin case, O(1/ε) EG updates are required to reach a given accuracy ε in the dual; in contrast, for log-linear models only O(log(1/ε)) updates are required. For both the max-margin and log-linear cases, our bounds suggest that the online EG algorithm requires a factor of n less computation to reach a desired accuracy than the batch EG algorithm, where n is the number of training examples. Our experiments confirm that the online algorithms are much faster than the batch algorithms in practice. We describe how the EG updates factor in a convenient way for structured prediction problems, allowing the algorithms to be efficiently applied to problems such as sequence learning or natural language parsing. We perform extensive evaluation of the algorithms, comparing them to L-BFGS and stochastic gradient descent for log-linear models, and to SVM-Struct for max-margin models. The algorithms are applied to a multi-class problem as well as to a more complex large-scale parsing task. In all these settings, the EG algorithms presented here outperform the other methods.
Resumo:
Hybrid system representations have been applied to many challenging modeling situations. In these hybrid system representations, a mixture of continuous and discrete states is used to capture the dominating behavioural features of a nonlinear, possible uncertain, model under approximation. Unfortunately, the problem of how to best design a suitable hybrid system model has not yet been fully addressed. This paper proposes a new joint state measurement relative entropy rate based approach for this design purpose. Design examples and simulation studies are presented which highlight the benefits of our proposed design approaches.
Resumo:
A range of terms is used in Australian higher education institutions to describe learning approaches and teaching models that provide students with opportunities to engage in learning connected to the world of work. The umbrella term currently being used widely is Work Integrated Learning (WIL). The common aim of approaches captured under the term WIL is to integrate discipline specific knowledge learnt in university setting with that learnt in the practice of work through purposefully designed curriculum. In endeavours to extend WIL opportunities for students, universities are currently exploring authentic learning experiences, both within and outside of university settings. Some universities describe these approaches as ‘real world learning’ or ‘professional learning’. Others refer to ‘social engagement’ with the community and focus on building social capital and citizenship through curriculum design that enables students to engage with the professions through a range of learning experiences. This chapter discusses the context for, the scope, purposes, characteristics and effectiveness of WIL across Australian universities as derived from a national scoping study. This study, undertaken in response to a high level of interest in WIL, involved data collection from academic and professional staff, and students at nearly all Australian universities. Participants in the study consistently reported the benefits, especially in relation to the student learning experience. Responses highlight the importance of strong partnerships between stakeholders to facilitate effective learning outcomes and a range of issues that shape the quality of approaches and models being adopted, in promoting professional learning.
Resumo:
We consider the problem of how to construct robust designs for Poisson regression models. An analytical expression is derived for robust designs for first-order Poisson regression models where uncertainty exists in the prior parameter estimates. Given certain constraints in the methodology, it may be necessary to extend the robust designs for implementation in practical experiments. With these extensions, our methodology constructs designs which perform similarly, in terms of estimation, to current techniques, and offers the solution in a more timely manner. We further apply this analytic result to cases where uncertainty exists in the linear predictor. The application of this methodology to practical design problems such as screening experiments is explored. Given the minimal prior knowledge that is usually available when conducting such experiments, it is recommended to derive designs robust across a variety of systems. However, incorporating such uncertainty into the design process can be a computationally intense exercise. Hence, our analytic approach is explored as an alternative.
Resumo:
This paper discusses women’s involvement in their children’s mathematics education. It does, where possible, focus Torres Strait Islander women who share the aspirations of Aborginal communities around Australia. That is, they are keen for their children to receive an education that provides them with opportunities for their present and future lives. They are also keen to have their cultures’ child learning practices recognised and respected within mainstream education. This recognition has some way to go with the language of instruction in schools written to English conventions, decontextualised and disconnected to the students’ culture, Community and home language.
Resumo:
Bistability arises within a wide range of biological systems from the λ phage switch in bacteria to cellular signal transduction pathways in mammalian cells. Changes in regulatory mechanisms may result in genetic switching in a bistable system. Recently, more and more experimental evidence in the form of bimodal population distributions indicates that noise plays a very important role in the switching of bistable systems. Although deterministic models have been used for studying the existence of bistability properties under various system conditions, these models cannot realize cell-to-cell fluctuations in genetic switching. However, there is a lag in the development of stochastic models for studying the impact of noise in bistable systems because of the lack of detailed knowledge of biochemical reactions, kinetic rates, and molecular numbers. In this work, we develop a previously undescribed general technique for developing quantitative stochastic models for large-scale genetic regulatory networks by introducing Poisson random variables into deterministic models described by ordinary differential equations. Two stochastic models have been proposed for the genetic toggle switch interfaced with either the SOS signaling pathway or a quorum-sensing signaling pathway, and we have successfully realized experimental results showing bimodal population distributions. Because the introduced stochastic models are based on widely used ordinary differential equation models, the success of this work suggests that this approach is a very promising one for studying noise in large-scale genetic regulatory networks.
Resumo:
PURPOSE: Hreceptor (VEGFR) and FGF receptor (FGFR) signaling pathways. EXPERIMENTAL DESIGN: Six different s.c. patient-derived HCC xenografts were implanted into mice. Tumor growth was evaluated in mice treated with brivanib compared with control. The effects of brivanib on apoptosis and cell proliferation were evaluated by immunohistochemistry. The SK-HEP1 and HepG2 cells were used to investigate the effects of brivanib on the VEGFR-2 and FGFR-1 signaling pathways in vitro. Western blotting was used to determine changes in proteins in these xenografts and cell lines. RESULTS: Brivanib significantly suppressed tumor growth in five of six xenograft lines. Furthermore, brivanib-induced growth inhibition was associated with a decrease in phosphorylated VEGFR-2 at Tyr(1054/1059), increased apoptosis, reduced microvessel density, inhibition of cell proliferation, and down-regulation of cell cycle regulators. The levels of FGFR-1 and FGFR-2 expression in these xenograft lines were positively correlated with its sensitivity to brivanib-induced growth inhibition. In VEGF-stimulated and basic FGF stimulated SK-HEP1 cells, brivanib significantly inhibited VEGFR-2, FGFR-1, extracellular signal-regulated kinase 1/2, and Akt phosphorylation. CONCLUSION: This study provides a strong rationale for clinical investigation of brivanib in patients with HCC.