982 resultados para Key derivation function
Resumo:
Endothelial function plays a key role in the local regulation of vascular tone. Alterations in endothelial function may result in impaired release of endothelium-derived relaxing factors or increased release of endothelium-derived contracting factors. Heart failure may impair endothelial function by means of reduced synthesis and release of nitric oxide (NO) or by increased degradation of NO and increased production of endothelin-1. Endothelial dysfunction may worsen heart function by means of peripheral effects, causing increased afterload and central effects such as myocardial ischemia and inducible nitric oxide synthase (iNOS)-induced detrimental effects. Evidence from clinical studies has suggested that there is a correlation between decreased endothelial function and increasing severity of congestive heart failure (CHF). Treatments that improve heart function may also improve endothelial dysfunction. The relationship between endothelial dysfunction and heart failure may be masked by the stage of endothelial dysfunction, the location of vessels being tested, and the state of endothelial-dependent vasodilatation response.
Resumo:
The four-link chain of the motor unit represents the contemporary end-point of some two millennia of evolving knowledge in neuroscience. The paradigm shift in neuromuscular epistemology occurred in the mid-17th century. In 1666, the newly graduated Dutch doctor, Jan Swammerdam (1637-1680) published his former investigations of dissected nerve-muscle preparations. These experiments comprised the quantum leap from observation and speculation, to that of experimentation in the field of neuroanatomy and neurophysiology. In what he termed 'A Curious Experiment' he also described the phenomenon of intrinsic muscle excitability - I cannot observe that the muscle in the living animal ever absolutely ceases from all motion. Eighty years later (1752), von Haller demonstrated experimentally that irritability (contractility) was an intrinsic property of all muscular tissue; and distinguished between the sensibility of nerve impulses and the irritability of muscular contraction. This experimental progression from Swammerdam to von Haller culminated in 1850, when Claude Bernard's studies in experimental pharmacology confirmed that muscle was a functional unit, independent of any electrical innervation via its supplying nerve. This account comprises an audit of Swammerdam's work in the perspective of neuromuscular knowledge. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
This study utilized recently developed microbead technology to remove natural killer (NK) cells from peripheral blood mononuclear cell (PBMC) preparations to determine the effect of acute exercise on T-lymphocyte function, independent of changes in lymphocyte subpopulations. Twelve well-trained male runners completed a 60-min exercise trial at 95% ventilatory threshold and a no-exercise control trial. Six blood samples were taken at each session: before exercise, midexercise, immediately after exercise, and 30, 60, and 90 min after exercise. Isolated PBMC and NK cell-depleted PBMC were stimulated with the mitogen phytohemagglutinin. Cellular proliferation was assessed by using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide dye uptake. In the PBMC cultures, there was a significantly lower mitogen response to phytohemagglutinin in exercise compared with the control condition immediately postexercise. There were no significant differences between the control and exercise conditions in NK cell-depleted PBMC cultures or in the responses adjusted for the percentage of CD3 cells. The present findings do not support the view that T-lymphocyte function is reduced after exercise.
Resumo:
Here we consider the role of abstract models in advancing our understanding of movement pathology. Models of movement coordination and control provide the frameworks necessary for the design and interpretation of studies of acquired and developmental disorders. These models do not however provide the resolution necessary to reveal the nature of the functional impairments that characterise specific movement pathologies. In addition, they do not provide a mapping between the structural bases of various pathologies and the associated disorders of movement. Current and prospective approaches to the study and treatment of movement disorders are discussed. It is argued that the appreciation of structure-function relationships, to which these approaches give rise, represents a challenge to current models of interlimb coordination, and a stimulus for their continued development. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
hlx1 is a related homeobox gene expressed in a dynamic spatiotemporal expression pattern during development of the zebrafish brain. The homologues of hlx1, mouse dbx1 and Xenopus Xdbx, are known to play a role in the specification of neurons in the spinal cord. However, the role of these molecules in the brain is less well known. We have used two different approaches to elucidate a putative function for hlx1 in the developing zebrafish brain. Blastomeres were injected with either synthetic hlx1 mRNA in gain-of-function experiments or with antisense morpholino oligonucleotides directed against hlx1 in loss-of-function experiments. Mis-expression of hlx1 produced severe defects in brain morphogenesis as a result of abnormal ventricle formation, a phenotype we referred to as fused-brain. These animals also showed a reduction in the size of forebrain neuronal clusters as well as abnormal axon pathfinding. hlx1 antisense morpholinos specifically perturbed hindbrain morphogenesis leading to defects in the integrity of the neuroepithelium. While hindbrain patterning was in the most part unaffected there were select disruptions to the expression pattern of the neurogenic gene Zash1B in specific rhombomeres. Our results indicate multiple roles for hlx1 during zebrafish brain morphogenesis.
Resumo:
Plant toxins are substances produced and secreted by plants to defend themselves against predators. In a broad sense, this includes all substances that have a toxic effect on targeted organisms, whether they are microbes, other plants, insects, or higher animals. Plant toxins have a diverse range of structures, from small organic molecules through to proteins. This review gives an overview of the various classes of plant toxins but focuses on an interesting class of protein-based plant toxins containing a cystine knot motif. This structural motif confers exceptional stability on proteins containing it and is associated with a wide range of biological activities. The biological activities and structural stability offer many potential applications in the pharmaceutical and agricultural fields. One particularly exciting prospect is in the use of protein-based plant toxins as molecular scaffolds for displaying pharmaceutically important bioactivities. Future applications of plant toxins are likely to involve genetic engineering techniques and molecular pharming approaches.
Resumo:
Background: Laparoscopic cholecystectomy (LC) has become the first-line surgical treatment of calculous gall-bladder disease and the benefits over open cholecystectomy are well known. In the early years of LC, the higher rate of bile duct injuries compared with open cholecystectomy was believed to be due to the 'learning curve' and would dissipate with increased experience. The purpose of the present paper was to review a tertiary referral unit's experience of bile duct injuries induced by LC. Methods: A retrospective analysis was performed on all patients referred for management of an iatrogenic bile duct injury from 1981 to 2000. For injuries sustained at LC, details of time between LC and recognition of the injury, time from injury to definitive repair, type of injury, use of intraoperative cholangiography (IOC), definitive repair and postoperative outcome were recorded. The type of injury sustained at open cholecystectomy was similarly classified to allow the severity of injury to be compared. Results: There were 131 patients referred for management of an iatrogenic bile duct injury that occurred at open cholecystectomy (n = 62), liver resection (n = 5) and at LC (n = 64). Only 39% of bile duct injuries were recognized at the time of LC. Following conversion to open operation, half the subsequent procedures were considered inappropriate. When the injury was not recognized during LC, 70% of patients developed bile leak/peritonitis, almost half of whom were referred, whereas the rest underwent a variety of operative procedures by the referring surgeon. The remainder developed jaundice or abnormal liver function tests and cholangitis. An IOC was performed in 43% of cases, but failed to identify an injury in two-thirds of patients. The bile duct injuries that occurred at LC were of greater severity than with open cholecystectomy. Following definitive repair, there was one death (1.6%). Ninety-two per cent of patients had an uncomplicated recovery and there was one late stricture requiring surgical revision. Conclusions: The early prediction that the rate of injury during LC would decline substantially with increased experience has not been fulfilled. Bile duct injury that occurs at LC is of greater severity than with open cholecystectomy. Bile duct injury is recognized during LC in less than half the cases. Evidence is accruing that the use of cholangiography reduces the risk and severity of injury and, when correctly interpreted, increases the chance of recognition of bile duct injury during the procedure. Prevention is the key but, should an injury occur, referral to a specialist in biliary reconstructive surgery is indicated.
Resumo:
The contribution of roof gutters to Aedes aegypti (L.) and Ochlerotatus notoscriptus (Skuse) pupal populations was quantified for the first time in Cairns, Australia. Concurrent yard and roof surveys yielded ill estimated 6,934 mosquito pupae, comprising four species. Roof gutters were all uncommon but productive source of Ae. aegypti in both wet season (n = 11) and dry season (n = 2) surveys, producing 52.6% and 39.5% of the respective populations. First story gutters accounted for 92.3% of the positive gutters. Therefore, treatment of roof gutters is a critical element in Ae. aegypti control campaigns during dengue outbreaks. In wet season yards, the largest standing, crops of Ae. aegypti occurred in garden accoutrements, discarded household items, and rubbish (36.4%, 28.0%, and 20.6%, respectively). In dry season yards, rubbish produced 79.6% of the Ae. aegypti pupae. The number of Ae. aegypti pupae/person was 2.36 and 0.59 for the wet and dry season surveys, respectively.
Resumo:
It has been argued that power-law time-to-failure fits for cumulative Benioff strain and an evolution in size-frequency statistics in the lead-up to large earthquakes are evidence that the crust behaves as a Critical Point (CP) system. If so, intermediate-term earthquake prediction is possible. However, this hypothesis has not been proven. If the crust does behave as a CP system, stress correlation lengths should grow in the lead-up to large events through the action of small to moderate ruptures and drop sharply once a large event occurs. However this evolution in stress correlation lengths cannot be observed directly. Here we show, using the lattice solid model to describe discontinuous elasto-dynamic systems subjected to shear and compression, that it is for possible correlation lengths to exhibit CP-type evolution. In the case of a granular system subjected to shear, this evolution occurs in the lead-up to the largest event and is accompanied by an increasing rate of moderate-sized events and power-law acceleration of Benioff strain release. In the case of an intact sample system subjected to compression, the evolution occurs only after a mature fracture system has developed. The results support the existence of a physical mechanism for intermediate-term earthquake forecasting and suggest this mechanism is fault-system dependent. This offers an explanation of why accelerating Benioff strain release is not observed prior to all large earthquakes. The results prove the existence of an underlying evolution in discontinuous elasto-dynamic, systems which is capable of providing a basis for forecasting catastrophic failure and earthquakes.