760 resultados para Intuitionistic Fuzzy sets


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Complexity is conventionally defined as the level of detail or intricacy contained within a picture. The study of complexity has received relatively little attention-in part, because of the absence of an acceptable metric. Traditionally, normative ratings of complexity have been based on human judgments. However, this study demonstrates that published norms for visual complexity are biased. Familiarity and learning influence the subjective complexity scores for nonsense shapes, with a significant training x familiarity interaction [F(1,52) = 17.53, p <.05]. Several image-processing techniques were explored as alternative measures of picture and image complexity. A perimeter detection measure correlates strongly with human judgments of the complexity of line drawings of real-world objects and nonsense shapes and captures some of the processes important in judgments of subjective complexity, while removing the bias due to familiarity effects.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Motivation: Recently, many univariate and several multivariate approaches have been suggested for testing differential expression of gene sets between different phenotypes. However, despite a wealth of literature studying their performance on simulated and real biological data, still there is a need to quantify their relative performance when they are testing different null hypotheses.

Results: In this article, we compare the performance of univariate and multivariate tests on both simulated and biological data. In the simulation study we demonstrate that high correlations equally affect the power of both, univariate as well as multivariate tests. In addition, for most of them the power is similarly affected by the dimensionality of the gene set and by the percentage of genes in the set, for which expression is changing between two phenotypes. The application of different test statistics to biological data reveals that three statistics (sum of squared t-tests, Hotelling's T2, N-statistic), testing different null hypotheses, find some common but also some complementing differentially expressed gene sets under specific settings. This demonstrates that due to complementing null hypotheses each test projects on different aspects of the data and for the analysis of biological data it is beneficial to use all three tests simultaneously instead of focusing exclusively on just one.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hunter and Konieczny explored the relationships between measures of inconsistency for a belief base and the minimal inconsistent subsets of that belief base in several of their papers. In particular, an inconsistency value termed MIVC, defined from minimal inconsistent subsets, can be considered as a Shapley Inconsistency Value. Moreover, it can be axiomatized completely in terms of five simple axioms. MinInc, one of the five axioms, states that each minimal inconsistent set has the same amount of conflict. However, it conflicts with the intuition illustrated by the lottery paradox, which states that as the size of a minimal inconsistent belief base increases, the degree of inconsistency of that belief base becomes smaller. To address this, we present two kinds of revised inconsistency measures for a belief base from its minimal inconsistent subsets. Each of these measures considers the size of each minimal inconsistent subset as well as the number of minimal inconsistent subsets of a belief base. More specifically, we first present a vectorial measure to capture the inconsistency for a belief base, which is more discriminative than MIVC. Then we present a family of weighted inconsistency measures based on the vectorial inconsistency measure, which allow us to capture the inconsistency for a belief base in terms of a single numerical value as usual. We also show that each of the two kinds of revised inconsistency measures can be considered as a particular Shapley Inconsistency Value, and can be axiomatically characterized by the corresponding revised axioms presented in this paper.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper studies the dynamic pricing problem of selling fixed stock of perishable items over a finite horizon, where the decision maker does not have the necessary historic data to estimate the distribution of uncertain demand, but has imprecise information about the quantity demand. We model this uncertainty using fuzzy variables. The dynamic pricing problem based on credibility theory is formulated using three fuzzy programming models, viz.: the fuzzy expected revenue maximization model, a-optimistic revenue maximization model, and credibility maximization model. Fuzzy simulations for functions with fuzzy parameters are given and embedded into a genetic algorithm to design a hybrid intelligent algorithm to solve these three models. Finally, a real-world example is presented to highlight the effectiveness of the developed model and algorithm.