868 resultados para High technology industries
Resumo:
The aim of the work presented in this study was to demonstrate the wide applicability of a single-label quenching resonance energy transfer (QRET) assay based on time-resolved lanthanide luminescence. QRET technology is proximity dependent method utilizing weak and unspecific interaction between soluble quencher molecule and lanthanide chelate. The interaction between quencher and chelate is lost when the ligand binds to its target molecule. The properties of QRET technology are especially useful in high throughput screening (HTS) assays. At the beginning of this study, only end-point type QRET technology was available. To enable efficient study of enzymatic reactions, the QRET technology was further developed to enable measurement of reaction kinetics. This was performed using proteindeoxyribonuclei acid (DNA) interaction as a first tool to monitor reaction kinetics. Later, the QRET was used to study nucleotide exchange reaction kinetics and mutation induced effects to the small GTPase activity. Small GTPases act as a molecular switch shifting between active GTP bound and inactive GDP bound conformation. The possibility of monitoring reaction kinetics using the QRET technology was evaluated using two homogeneous assays: a direct growth factor detection assay and a nucleotide exchange monitoring assay with small GTPases. To complete the list, a heterogeneous assay for monitoring GTP hydrolysis using small GTPases, was developed. All these small GTPase assays could be performed using nanomolar protein concentrations without GTPase pretreatment. The results from these studies demonstrated that QRET technology can be used to monitor reaction kinetics and further enable the possibility to use the same method for screening.
Resumo:
The 3rd International Conference on High Pressure Bioscience and Biotechnology was held in the city of Rio de Janeiro from September 27 to September 30, 2004. The meeting, promoted by the International Association of High Pressure Bioscience and Biotechnology (IAHPBB), congregated top scientists and researchers from all over the world. In common, they shared the use of hydrostatic pressure for research, technical development, or industrial applications. The meeting consisted of invited lectures, contributed papers and a well-attended poster session. Very exciting discussions were held inside and outside the sessions, and the goals of discussing state-of-the-art data and establishing working collaborations and co-operations were fully attained.
Resumo:
The aim of the present study was to examine the feasibility of DNA microarray technology in an attempt to construct an evaluation system for determining gas toxicity using high-pressure conditions, as it is well known that pressure increases the concentration of a gas. As a first step, we used yeast (Saccharomyces cerevisiae) as the indicator organism and analyzed the mRNA expression profiles after exposure of yeast cells to nitrogen gas. Nitrogen gas was selected as a negative control since this gas has low toxicity. Yeast DNA microarray analysis revealed induction of genes whose products were localized to the membranes, and of genes that are involved in or contribute to energy production. Furthermore, we found that nitrogen gas significantly affected the transport system in the cells. Interestingly, nitrogen gas also resulted in induction of cold-shock responsive genes. These results suggest the possibility of applying yeast DNA microarray to gas bioassays up to 40 MPa. We therefore think that "bioassays" are ideal for use in environmental control and protection studies.
Resumo:
An electric system based on renewable energy faces challenges concerning the storage and utilization of energy due to the intermittent and seasonal nature of renewable energy sources. Wind and solar photovoltaic power productions are variable and difficult to predict, and thus electricity storage will be needed in the case of basic power production. Hydrogen’s energetic potential lies in its ability and versatility to store chemical energy, to serve as an energy carrier and as feedstock for various industries. Hydrogen is also used e.g. in the production of biofuels. The amount of energy produced during hydrogen combustion is higher than any other fuel’s on a mass basis with a higher-heating-value of 39.4 kWh/kg. However, even though hydrogen is the most abundant element in the universe, on Earth most hydrogen exists in molecular forms such as water. Therefore, hydrogen must be produced and there are various methods to do so. Today, the majority hydrogen comes from fossil fuels, mainly from steam methane reforming, and only about 4 % of global hydrogen comes from water electrolysis. Combination of electrolytic production of hydrogen from water and supply of renewable energy is attracting more interest due to the sustainability and the increased flexibility of the resulting energy system. The preferred option for intermittent hydrogen storage is pressurization in tanks since at ambient conditions the volumetric energy density of hydrogen is low, and pressurized tanks are efficient and affordable when the cycling rate is high. Pressurized hydrogen enables energy storage in larger capacities compared to battery technologies and additionally the energy can be stored for longer periods of time, on a time scale of months. In this thesis, the thermodynamics and electrochemistry associated with water electrolysis are described. The main water electrolysis technologies are presented with state-of-the-art specifications. Finally, a Power-to-Hydrogen infrastructure design for Lappeenranta University of Technology is presented. Laboratory setup for water electrolysis is specified and factors affecting its commissioning in Finland are presented.
Resumo:
This thesis is part of the Arctic Materials Technologies Development –project. The research of the thesis was done in cooperation with Arctech Helsinki Shipyard, Lappeenranta University of Technology and Kemppi Oy. Focus of the thesis was to study narrow gap flux-cored arc welding of two high strength steels with three different groove angles of 20°, 10° and 5°. Welding of the 25 mm thick E500 TMCP and 10 mm thick EH36 steels was mechanized and Kemppi WisePenetration and WiseFusion processes were tested with E500 TMCP steel. EH36 steel test pieces were welded without Wise processes. Shielding gases chosen were carbon dioxide and a mixture of argon and carbon dioxide. Welds were tested with non-destructive and destructive testing methods. Radiographic, visual, magnetic particle and liquid penetrant testing proved that welds were free from imperfections. After non-destructive testing, welds were tested with various destructive testing methods. Impact strength, bending, tensile strength and hardess tests proved that mechanized welding and Wise processes produced quality welds with narrower gap. More inconsistent results were achieved with test pieces welded without Wise processes. Impact test results of E500 TMCP exceeded the 50 J limit on weld, set by Russian Maritime Register of Shipping. EH36 impact test results were much closer to the limiting values of 34 J on weld and 47 on HAZ. Hardness values of all test specimens were below the limiting values. Bend testing and tensile testing results fulfilled the the Register requirements. No cracking or failing occurred on bend test specimens and tensile test results exceeded the Register limits of 610 MPa for E500 TMCP and 490 MPa for EH36.
Resumo:
Vapor-Liquid equilibria of palm fatty acids distillates/carbon dioxide system has been investigated experimentally at temperatures of 333, 353, and 373 K and pressures of 20, 23, 26, and 29 MPa using the static method. Experimental data for the quasi-binary system palm fatty acids distillates/carbon dioxide has been correlated with Redlich-Kwong-Aspen equation of state. Modeling shows good agreement with experimental data. Selectivity obtained indicates that supercritical carbon dioxide is a reasonable solvent for separating saturated (palmitic acid) and unsaturated (oleic+linoleic acids) fatty acids from palm fatty acids distillates in a continuous multistage countercurrent column.
Resumo:
The generalized maximum likelihood method was used to determine binary interaction parameters between carbon dioxide and components of orange essential oil. Vapor-liquid equilibrium was modeled with Peng-Robinson and Soave-Redlich-Kwong equations, using a methodology proposed in 1979 by Asselineau, Bogdanic and Vidal. Experimental vapor-liquid equilibrium data on binary mixtures formed with carbon dioxide and compounds usually found in orange essential oil were used to test the model. These systems were chosen to demonstrate that the maximum likelihood method produces binary interaction parameters for cubic equations of state capable of satisfactorily describing phase equilibrium, even for a binary such as ethanol/CO2. Results corroborate that the Peng-Robinson, as well as the Soave-Redlich-Kwong, equation can be used to describe phase equilibrium for the following systems: components of essential oil of orange/CO2.
Resumo:
This work describes a method to predict the solubility of essential oils in supercritical carbon dioxide. The method is based on the formulation proposed in 1979 by Asselineau, Bogdanic and Vidal. The Peng-Robinson and Soave-Redlich-Kwong cubic equations of state were used with the van der Waals mixing rules with two interaction parameters. Method validation was accomplished calculating orange essential oil solubility in pressurized carbon dioxide. The solubility of orange essential oil in carbon dioxide calculated at 308.15 K for pressures of 50 to 70 bar varied from 1.7± 0.1 to 3.6± 0.1 mg/g. For same the range of conditions, experimental solubility varied from 1.7± 0.1 to 3.6± 0.1 mg/g. Predicted values were not very sensitive to initial oil composition.
Resumo:
This master’s thesis studies the case company’s current purchase invoice process and the challenges that are related to it. Like most of other master’s thesis this study consists of both theoretical- and empirical parts. The purpose of this work is to combine theoretical and empirical parts together so that the theoretical part brings value to the empirical case study. The case company’s main business is frequency converters for both low voltage AC & DC drives and medium voltage AC Drives which are used across all industries and applications. The main focus of this study is on the current invoice process modelling. When modelling the existing process with discipline and care, current challenges can be understood better. Empirical study relays heavily on interviews and existing, yet fragmented, data. This, along with own calculations and analysis, creates the foundation for the empirical part of this master’s thesis.
Resumo:
Analyses of ochratoxin A (OTA) in domestic and imported beers were perfomed by immunoaffinity column and high - perfomance liquid chromatography (HPLC) using a fluorescence detector. Recoveries of OTA from beer samples spiked at levels from 8.0 to 800pg/mL ranged from 81.2% to 95.0%, with coefficient of variation between 0% e 11.0%. Detection limit and quantification limit were 2.0pg/mL and 8.0pg/mL, respectively. Of the total of 26 samples produced in Brazil only 6 (23%), contained trace amounts of OTA. Of the 4 imported beers, in 2, Ireland and Germany, were detected OTA at levels of 25pg/mL and 82pg/mL, respectively.
Resumo:
Experiments were carried out to determine the properties of the welded joints in 8mm thick high-strength steels produced by quenching and tempering and thermomechanical rolling with accelerated cooling (tensile strength 821–835 MPa). The dependence of the strength, elongation, hardness, impact energy and crack opening displacement on the heat input in the range 1.0–0.7 kJ mm21 was determined. The results show that the dependence of the strength of the welded joints decreases and that of the elongation increases. The heat input has only a slight effect on the impact energy and crack opening displacement in the heat-affected zone.
Electromagnetic and thermal design of a multilevel converter with high power density and reliability
Resumo:
Electric energy demand has been growing constantly as the global population increases. To avoid electric energy shortage, renewable energy sources and energy conservation are emphasized all over the world. The role of power electronics in energy saving and development of renewable energy systems is significant. Power electronics is applied in wind, solar, fuel cell, and micro turbine energy systems for the energy conversion and control. The use of power electronics introduces an energy saving potential in such applications as motors, lighting, home appliances, and consumer electronics. Despite the advantages of power converters, their penetration into the market requires that they have a set of characteristics such as high reliability and power density, cost effectiveness, and low weight, which are dictated by the emerging applications. In association with the increasing requirements, the design of the power converter is becoming more complicated, and thus, a multidisciplinary approach to the modelling of the converter is required. In this doctoral dissertation, methods and models are developed for the design of a multilevel power converter and the analysis of the related electromagnetic, thermal, and reliability issues. The focus is on the design of the main circuit. The electromagnetic model of the laminated busbar system and the IGBT modules is established with the aim of minimizing the stray inductance of the commutation loops that degrade the converter power capability. The circular busbar system is proposed to achieve equal current sharing among parallel-connected devices and implemented in the non-destructive test set-up. In addition to the electromagnetic model, a thermal model of the laminated busbar system is developed based on a lumped parameter thermal model. The temperature and temperature-dependent power losses of the busbars are estimated by the proposed algorithm. The Joule losses produced by non-sinusoidal currents flowing through the busbars in the converter are estimated taking into account the skin and proximity effects, which have a strong influence on the AC resistance of the busbars. The lifetime estimation algorithm was implemented to investigate the influence of the cooling solution on the reliability of the IGBT modules. As efficient cooling solutions have a low thermal inertia, they cause excessive temperature cycling of the IGBTs. Thus, a reliability analysis is required when selecting the cooling solutions for a particular application. The control of the cooling solution based on the use of a heat flux sensor is proposed to reduce the amplitude of the temperature cycles. The developed methods and models are verified experimentally by a laboratory prototype.
Resumo:
Laser beam welding (LBW) is applicable for a wide range of industrial sectors and has a history of fifty years. However, it is considered an unusual method with applications typically limited to welding of thin sheet metal. With a new generation of high power lasers there has been a renewed interest in thick section LBW (also known as keyhole laser welding). There was a growing body of publications during 2001-2011 that indicates an increasing interest in laser welding for many industrial applications, and in last ten years, an increasing number of studies have examined the ways to increase the efficiency of the process. Expanding the thickness range and efficiency of LBW makes the process a possibility for industrial applications dealing with thick metal welding: shipbuilding, offshore structures, pipelines, power plants and other industries. The advantages provided by LBW, such as high process speed, high productivity, and low heat input, may revolutionize these industries and significantly reduce the process costs. The research to date has focused on either increasing the efficiency via optimizing process parameters, or on the process fundamentals, rather than on process and workpiece modifications. The argument of this thesis is that the efficiency of the laser beam process can be increased in a straightforward way in the workshop conditions. Throughout this dissertation, the term “efficiency” is used to refer to welding process efficiency, specifically, an increase in efficiency refers an increase in weld’s penetration depth without increasing laser power level or decreasing welding speed. These methods are: modifications of the workpiece – edge surface roughness and air gap between the joining plates; modification of the ambient conditions – local reduction of the pressure in the welding zone; modification of the welding process – preheating of the welding zone. Approaches to improve the efficiency are analyzed and compared both separately and combined. These experimentally proven methods confirm previous findings and contribute additional evidence which expand the opportunities for laser beam welding applications. The focus of this research was primarily on the effects of edge surface roughness preparation and pre-set air gap between the plates on weld quality and penetration depth. To date, there has been no reliable evidence that such modifications of the workpiece give a positive effect on the welding efficiency. Other methods were tested in combination with the two methods mentioned above. The most promising - combining with reduced pressure method - resulted in at least 100% increase in efficiency. The results of this thesis support the idea that joining those methods in one modified process will provide the modern engineering with a sufficient tool for many novel applications with potential benefits to a range of industries.
Resumo:
Powdered egg is used as an emulsifying agent in emulsion formulations. It is an excellent source of high quality protein, of which the yolk contains 44% and the egg white 56%. Spray drying is a widely applied method for drying aqueous or organic solutions and emulsions in the chemical and food industries. Spray drying can be used to preserve food or simply as a rapid drying method. The objective of this work was to study the viability of obtaining powdered egg yolk powder using a Büchi B-190 Mini Spray Dryer. The egg yolk protein was evaluated by the semi-micro Kjeldahl method. It was concluded that the use of the Büchi B-190 Mini Spray Dryer to produce powdered egg yolk is perfectly feasible.
Resumo:
Bioflavors and oligosaccharides are two classes of substances that may be produced biotechnologically through microbial bioprocesses. These compounds have attracted the interest of pharmaceutical and food industries not only due to their technological properties (sweetening/fiber or flavoring, respectively), but also as a consequence of other functional properties such as, for example, health promoting benefits. The use of agro-industrial residues as substrates in biotechnological processes seems to be a valuable alternative in helping to overcome the high manufacturing costs of industrial fermentations. This manuscript reviews the most important advances in biotechnological production of bioflavors and oligosaccharides. The use of some agro-industrial residues in such processes is also cited and discussed, showing that this is a rising trend in biotechnology.