905 resultados para Hierarchical Bayes
Resumo:
Doutoramento em Ciências da Comunicação - Especialidade de Comunicação e Artes
Resumo:
Esta dissertação incide sobre o estudo e análise de uma solução para a criação de um sistema de recomendação para uma comunidade de consumidores de media e no consequente desenvolvimento da mesma cujo âmbito inicial engloba consumidores de jogos, filmes e/ou séries, com o intuito de lhes proporcionar a oportunidade de partilharem experiências, bem como manterem um registo das mesmas. Com a informação adquirida, o sistema reúne condições para proceder a sugestões direcionadas a cada membro da comunidade. O sistema atualiza a sua informação mediante as ações e os dados fornecidos pelos membros, bem como pelo seu feedback às sugestões. Esta aprendizagem ao longo do tempo permite que as sugestões do sistema evoluam juntamente com a mudança de preferência dos membros ou se autocorrijam. O sistema toma iniciativa de sugerir mediante determinadas ações, mas também pode ser invocada uma sugestão diretamente pelo utilizador, na medida em que este não precisa de esperar por sugestões, podendo pedir ao sistema que as forneça num determinado momento. Nos testes realizados foi possível apurar que o sistema de recomendação desenvolvido forneceu sugestões adequadas a cada utilizador específico, tomando em linha de conta as suas ações prévias. Para além deste facto, o sistema não forneceu qualquer sugestão quando o histórico destas tinha provado incomodar o utilizador.
Resumo:
Trabalho Final de Mestrado para obtenção do grau de Mestre em Engenharia Química
Resumo:
Dissertação para Obtenção do Grau de Mestre em Engenharia Civil – Estruturas e Geotecnia pela Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa
Resumo:
This paper develops an energy management system with integration of smart meters for electricity consumers in a smart grid context. The integration of two types of smart meters (SM) are developed: (i) consumer owned SM and (ii) distributor owned SM. The consumer owned SM runs over a wireless platform - ZigBee protocol and the distributor owned SM uses the wired environment - ModBus protocol. The SM are connected to a SCADA system (Supervisory Control And Data Acquisition) that supervises a network of Programmable Logic Controllers (PLC). The SCADA system/PLC network integrates different types of information coming from several technologies present in modern buildings. The developed control strategy implements a hierarchical cascade controller where inner loops are performed by local PLCs, and the outer loop is managed by a centralized SCADA system, which interacts with the entire local PLC network. In order to implement advanced controllers, a communication channel was developed to allow the communication between the SCADA system and the MATLAB software. (C) 2014 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Resumo:
With the help of a unique combination of density functional theory and computer simulations, we discover two possible scenarios, depending on concentration, for the hierarchical self-assembly of magnetic nanoparticles on cooling. We show that typically considered low temperature clusters, i.e. defect-free chains and rings, merge into more complex branched structures through only three types of defects: four-way X junctions, three-way Y junctions and two-way Z junctions. Our accurate calculations reveal the predominance of weakly magnetically responsive rings cross-linked by X defects at the lowest temperatures. We thus provide a strategy to fine-tune magnetic and thermodynamic responses of magnetic nanocolloids to be used in medical and microfluidics applications.
Resumo:
Modular design is crucial to manage large-scale systems and to support the divide-and-conquer development approach. It allows hierarchical representations and, therefore, one can have a system overview, as well as observe component details. Petri nets are suitable to model concurrent systems, but lack on structuring mechanisms to support abstractions and the composition of sub-models, in particular when considering applications to embedded controllers design. In this paper we present a module construct, and an underlying high-level Petri net type, to model embedded controllers. Multiple interfaces can be declared in a module, thus, different instances of the same module can be used in different situations. The interface is a subset of the module nodes, through which the communication with the environment is made. Module places can be annotated with a generic type, overridden with a concrete type at instance level, and constants declared in a module may have a new value in each instance.
Resumo:
This paper proposes an implementation, based on a multi-agent system, of a management system for automated negotiation of electricity allocation for charging electric vehicles (EVs) and simulates its performance. The widespread existence of charging infrastructures capable of autonomous operation is recognised as a major driver towards the mass adoption of EVs by mobility consumers. Eventually, conflicting requirements from both power grid and EV owners require automated middleman aggregator agents to intermediate all operations, for example, bidding and negotiation, between these parts. Multi-agent systems are designed to provide distributed, modular, coordinated and collaborative management systems; therefore, they seem suitable to address the management of such complex charging infrastructures. Our solution consists in the implementation of virtual agents to be integrated into the management software of a charging infrastructure. We start by modelling the multi-agent architecture using a federated, hierarchical layers setup and as well as the agents' behaviours and interactions. Each of these layers comprises several components, for example, data bases, decision-making and auction mechanisms. The implementation of multi-agent platform and auctions rules, and of models for battery dynamics, is also addressed. Four scenarios were predefined to assess the management system performance under real usage conditions, considering different types of profiles for EVs owners', different infrastructure configurations and usage and different loads on the utility grid (where real data from the concession holder of the Portuguese electricity transmission grid is used). Simulations carried with the four scenarios validate the performance of the modelled system while complying with all the requirements. Although all of these have been performed for one charging station alone, a multi-agent design may in the future be used for the higher level problem of distributing energy among charging stations. Copyright (c) 2014 John Wiley & Sons, Ltd.
Resumo:
This paper analyses forest fires in the perspective of dynamical systems. Forest fires exhibit complex correlations in size, space and time, revealing features often present in complex systems, such as the absence of a characteristic length-scale, or the emergence of long range correlations and persistent memory. This study addresses a public domain forest fires catalogue, containing information of events for Portugal, during the period from 1980 up to 2012. The data is analysed in an annual basis, modelling the occurrences as sequences of Dirac impulses with amplitude proportional to the burnt area. First, we consider mutual information to correlate annual patterns. We use visualization trees, generated by hierarchical clustering algorithms, in order to compare and to extract relationships among the data. Second, we adopt the Multidimensional Scaling (MDS) visualization tool. MDS generates maps where each object corresponds to a point. Objects that are perceived to be similar to each other are placed on the map forming clusters. The results are analysed in order to extract relationships among the data and to identify forest fire patterns.
Resumo:
Mestrado em Engenharia Informática - Área de Especialização em Arquiteturas, Sistemas e Redes
Resumo:
Dissertation presented at Universidade Nova de Lisboa, Faculdade de Ciências e Tecnologia in fulfilment of the requirements for the Masters degree in Mathematics and Applications, specialization in Actuarial Sciences, Statistics and Operations Research
Resumo:
Esta dissertação visa o estudo da influência da cultura organizacional no desempenho financeiro das organizações. Nesse contexto, procuramos analisar qual a cultura predominante das organizações, de forma a estabelecer posteriormente uma relação entre a cultura e o desempenho das empresas. Para isso a metodologia seguida foi a realização de um inquérito por questionário a empresas da região Douro de Portugal no sentido de obter, através de uma adaptação ao instrumento desenvolvido por Cameron e Quinn (2006), a cultura predominante da empresa, os indicadores financeiros necessários ao nosso estudo assim como, uma caracterização da amostra recolhida. Para análise e tratamento dos dados recolhidos através do inquérito por questionário foi utilizada a ferramenta estatística SPSS que nos permitiu retirar ilações sobre as características da amostra, assim como sobre a relação existente entre cultura organizacional e desempenho financeiro, esta relação foi avaliada através de testes de correlação e regressão linear múltipla. Os resultados sugerem que as variáveis culturais, cultura adocrática, mercado e hierárquica e o número de colaboradores explicam em cerca de 20% o resultado líquido ajustado. Também se verificou um efeito positivo da cultura adocrática e de mercado, embora o efeito da cultura de mercado seja mais forte que o da adocrática, e o efeito negativo da cultura hierárquica, ainda que estes resultados não sejam estatisticamente significativos. Não existem evidências que os tipos de cultura analisados (adocrática, de mercado e hierárquica) estão significativamente associados ao desempenho financeiro, avaliado pelos resultados líquidos ajustados, das empresas analisadas, quer pelos testes de correlação quer pelos resultados da estimação do modelo de regressão linear múltipla.
Resumo:
More than ever, there is an increase of the number of decision support methods and computer aided diagnostic systems applied to various areas of medicine. In breast cancer research, many works have been done in order to reduce false-positives when used as a double reading method. In this study, we aimed to present a set of data mining techniques that were applied to approach a decision support system in the area of breast cancer diagnosis. This method is geared to assist clinical practice in identifying mammographic findings such as microcalcifications, masses and even normal tissues, in order to avoid misdiagnosis. In this work a reliable database was used, with 410 images from about 115 patients, containing previous reviews performed by radiologists as microcalcifications, masses and also normal tissue findings. Throughout this work, two feature extraction techniques were used: the gray level co-occurrence matrix and the gray level run length matrix. For classification purposes, we considered various scenarios according to different distinct patterns of injuries and several classifiers in order to distinguish the best performance in each case described. The many classifiers used were Naïve Bayes, Support Vector Machines, k-nearest Neighbors and Decision Trees (J48 and Random Forests). The results in distinguishing mammographic findings revealed great percentages of PPV and very good accuracy values. Furthermore, it also presented other related results of classification of breast density and BI-RADS® scale. The best predictive method found for all tested groups was the Random Forest classifier, and the best performance has been achieved through the distinction of microcalcifications. The conclusions based on the several tested scenarios represent a new perspective in breast cancer diagnosis using data mining techniques.
Resumo:
This study aims to analyze which determinants predict frailty in general and each frailty domain (physical, psychological, and social), considering the integral conceptual model of frailty, and particularly to examine the contribution of medication in this prediction. A cross-sectional study was designed using a non-probabilistic sample of 252 community-dwelling elderly from three Portuguese cities. Frailty and determinants of frailty were assessed with the Tilburg Frailty Indicator. The amount and type of different daily-consumed medication were also examined. Hierarchical regression analysis were conducted. The mean age of the participants was 79.2 years (±7.3), and most of them were women (75.8%), widowed (55.6%) and with a low educational level (0–4 years: 63.9%). In this study, determinants explained 46% of the variance of total frailty, and 39.8, 25.3, and 27.7% of physical, psychological, and social frailty respectively. Age, gender, income, death of a loved one in the past year, lifestyle, satisfaction with living environment and self-reported comorbidity predicted total frailty, while each frailty domain was associated with a different set of determinants. The number of daily-consumed drugs was independently associated with physical frailty, and the consumption of medication for the cardiovascular system and for the blood and blood-forming organs explained part of the variance of total and physical frailty. The adverse effects of polymedication and its direct link with the level of comorbidities could explain the independent contribution of the amount of prescribed drugs to frailty prediction. On the other hand, findings in regard to medication type provide further evidence of the association of frailty with cardiovascular risk. In the present study, a significant part of frailty was predicted, and the different contributions of each determinant to frailty domains highlight the relevance of the integral model of frailty. The added value of a simple assessment of medication was considerable, and it should be taken into account for effective identification of frailty.
Resumo:
Artigo científico disponível actualmente em Early View (Online Version of Record published before inclusion in an issue)