951 resultados para Groundwater radioactivity
Resumo:
This study compares the chemical composition of the solution and exchange complex of soil in a 3-year-old irrigated vineyard (Vitis vinifera L., Red Globe cultivar) with that of adjacent clearing in the native hyperxerophyllic 'caatinga' vegetation. The soils are classified as Plinthic Eutrophic Red-Yellow Argisol; according to Soil Taxonomy they are isohyperthermic Plinthustalfs. Detailed physiographic characterization revealed an impermeable gravel and cobble covering the crystalline rocks; the relief of this layer was more undulating than the level surface. Significant higher concentrations of extractable Na, K, Mg and Ca were observed within the vineyard. Lower soil acidity, higher Ca/Mg ratios, as well as lower sodium adsorption and Na/K ratios reflected additions of dolomitic lime, superphosphate and K-bearing fertilizers. As the water of the São Francisco River is of good quality for irrigation (C1S1), the increases in Na were primarily attributed to capillary rise from the saline groundwater table. None of the soil in the study area was found to be sodic. About 62% of the vineyard had an Ap horizon with salinity levels above 1.5dSm-1 (considered detrimental for grape production); according to average values for this horizon, a potential 13% reduction in grape production was predicted. Differences in chemical composition in function of distance to the collector canals were observed in the clearing, but not in the vineyard. The influence of differences in the elevations of the surface and impermeable layers, as well as pediment thickness, was generally weaker under irrigation. Under irrigation, soil moisture was greater in points of convergent surface waterflow; the effect of surface curvature on chemical properties, though less consistent, was also stronger in the vineyard.
Resumo:
The Baix Empordà-Selva-Gavarres aquifer system is related to the fault set that created the tectonic basins of Empordà and Selva areas (NE Spain) during the Neogene. In this work, we describe groundwater hydrogeological, hydrochemical and isotopical (3H, δD, δ18O, and the 87Sr/86Sr ratio) characteristics of this system in order to illustrate the relevance of fault zones in groundwater flow-paths and the recharge. In that way, we identify two flow systems, with distinct hydrochemistry and isotopes. A local flow system originates at the Gavarres Range, and it flows towards the basins of the Baix Empordà and Selva, with an approximate residence time of 20 years. Additionally, a regional flow system has only been identified in the Selva basin. This one is related to the main fault zones, as preferential flow paths. Its recharge is located in mountain ranges with higher altitudes, namely the Transversal and Guilleries Ranges, with residence times larger than 50 years. Isotopical data has also shown mixing processes between both flow systems and rainfall recharge while multivariate statistical analysis of principal components has shown the main processes that control hydrochemistry of each flow systems
Resumo:
Normal rats were injected intravenously with 131I- and 125I-labeled intact murine and chimeric mouse-human monoclonal antibodies directed against carcinoembryonic antigen or with the corresponding F(ab')2 fragments. At different times after injection, individual animals were killed and radioactivity of blood and major organs, including bones and bone marrow, was determined. Ratios comparing radioactivity concentration in different tissues with that of bone marrow were calculated and found to remain stable during several effective half-lives of the antibodies. Mean bone marrow radioactivity was 35% (range, 29%-40%) of that of blood and 126% (range, 108%-147%) of that of liver after injection of intact Mabs or F(ab')2 fragments. In nude rats bearing human colon carcinoma xenografts producing carcinoembryonic antigen, relative bone marrow radioactivity was slightly lower than that in normal rats.
Resumo:
High N concentrations in biosolids are one of the strongest reasons for their agricultural use. However, it is essential to understand the fate of N in soils treated with biosolids for both plant nutrition and managing the environmental risk of NO3--N leaching. This work aimed at evaluating the risk of NO3--N leaching from a Spodosol and an Oxisol, each one treated with 0.5-8.0 dry Mg ha-1 of fresh tertiary sewage sludge, composted biosolids, limed biosolids, heat-dried biosolids and solar-irradiated biosolids. Results indicated that under similar application rates NO3--N accumulated up to three times more in the 20 cm topsoil of the Oxisol than the Spodosol. However, a higher water content held at field capacity in the Oxisol compensated for the greater nitrate concentrations. A 20 % NO3--N loss from the root zone in the amended Oxisol could be expected. Depending on the biosolids type, 42 to 76 % of the NO3--N accumulated in the Spodosol could be expected to leach down from the amended 20 cm topsoil. NO3--N expected to leach from the Spodosol ranged from 0.8 (composted sludge) to 3.5 times (limed sludge) the amounts leaching from the Oxisol treated alike. Nevertheless, the risk of NO3--N groundwater contamination as a result of a single biosolids land application at 0.5-8.0 dry Mg ha-1 could be considered low.
Resumo:
Summary: Effect of thinning on groundwater table depth in drained peatlands in northern Finland
Resumo:
Deeply incised river networks are generally regarded as robust features that are not easily modified by erosion or tectonics. Although the reorganization of deeply incised drainage systems has been documented, the corresponding importance with regard to the overall landscape evolution of mountain ranges and the factors that permit such reorganizations are poorly understood. To address this problem, we have explored the rapid drainage reorganization that affected the Cahabon River in Guatemala during the Quaternary. Sediment-provenance analysis, field mapping, and electrical resistivity tomography (ERT) imaging are used to reconstruct the geometry of the valley before the river was captured. Dating of the abandoned valley sediments by the Be-10-Al-26 burial method and geomagnetic polarity analysis allow us to determine the age of the capture events and then to quantify several processes, such as the rate of tectonic deformation of the paleovalley, the rate of propagation of post-capture drainage reversal, and the rate at which canyons that formed at the capture sites have propagated along the paleovalley. Transtensional faulting started 1 to 3 million years ago, produced ground tilting and ground faulting along the Cahabon River, and thus generated differential uplift rate of 0.3 +/- 0.1 up to 0.7 +/- 0.4 mm . y(-1) along the river's course. The river responded to faulting by incising the areas of relative uplift and depositing a few tens of meters of sediment above the areas of relative subsidence. Then, the river experienced two captures and one avulsion between 700 ky and 100 ky. The captures breached high-standing ridges that separate the Cahabon River from its captors. Captures occurred at specific points where ridges are made permeable by fault damage zones and/or soluble rocks. Groundwater flow from the Cahabon River down to its captors likely increased the erosive power of the captors thus promoting focused erosion of the ridges. Valley-fill formation and capture occurred in close temporal succession, suggesting a genetic link between the two. We suggest that the aquifers accumulated within the valley-fills, increased the head along the subterraneous system connecting the Cahabon River to its captors, and promoted their development. Upon capture, the breached valley experienced widespread drainage reversal toward the capture sites. We attribute the generalized reversal to combined effects of groundwater sapping in the valley-fill, axial drainage obstruction by lateral fans, and tectonic tilting. Drainage reversal increased the size of the captured areas by a factor of 4 to 6. At the capture sites, 500 m deep canyons have been incised into the bedrock and are propagating upstream at a rate of 3 to 11 mm . y(-1) deepening at a rate of 0.7 to 1 5 mm . y(-1). At this rate, 1 to 2 million years will be necessary for headward erosion to completely erase the topographic expression of the paleovalley. It is concluded that the rapid reorganization of this drainage system was made possible by the way the river adjusted to the new tectonic strain field, which involved transient sedimentation along the river's course. If the river had escaped its early reorganization and had been given the time necessary to reach a new dynamic equilibrium, then the transient conditions that promoted capture would have vanished and its vulnerability to capture would have been strongly reduced.
A filtering method to correct time-lapse 3D ERT data and improve imaging of natural aquifer dynamics
Resumo:
We have developed a processing methodology that allows crosshole ERT (electrical resistivity tomography) monitoring data to be used to derive temporal fluctuations of groundwater electrical resistivity and thereby characterize the dynamics of groundwater in a gravel aquifer as it is infiltrated by river water. Temporal variations of the raw ERT apparent-resistivity data were mainly sensitive to the resistivity (salinity), temperature and height of the groundwater, with the relative contributions of these effects depending on the time and the electrode configuration. To resolve the changes in groundwater resistivity, we first expressed fluctuations of temperature-detrended apparent-resistivity data as linear superpositions of (i) time series of riverwater-resistivity variations convolved with suitable filter functions and (ii) linear and quadratic representations of river-water-height variations multiplied by appropriate sensitivity factors; river-water height was determined to be a reliable proxy for groundwater height. Individual filter functions and sensitivity factors were obtained for each electrode configuration via deconvolution using a one month calibration period and then the predicted contributions related to changes in water height were removed prior to inversion of the temperature-detrended apparent-resistivity data. Applications of the filter functions and sensitivity factors accurately predicted the apparent-resistivity variations (the correlation coefficient was 0.98). Furthermore, the filtered ERT monitoring data and resultant time-lapse resistivity models correlated closely with independently measured groundwater electrical resistivity monitoring data and only weakly with the groundwater-height fluctuations. The inversion results based on the filtered ERT data also showed significantly less inversion artefacts than the raw data inversions. We observed resistivity increases of up to 10% and the arrival time peaks in the time-lapse resistivity models matched those in the groundwater resistivity monitoring data.
Resumo:
The Polochic and Motagua faults define the active plate boundary between the North American and Caribbean plates in central Guatemala. A splay of the Polochic Fault traverses the rapidly growing city of San Miguel Uspantan that is periodically affected by destructive earthquakes. This fault splay was located using a 2D electrical resistivity tomography (ERT) survey that also characterized the fault damage zone and evaluated the thickness and nature of recent deposits upon which most of the city is built. ERT images show the fault as a similar to 50 m wide, near-vertical low-resistivity anomaly, bounded within a few meters by high resistivity anomalies. Forward modeling reproduces the key aspects of the observed electrical resistivity data with remarkable fidelity thus defining the overall location, geometry, and internal structure of the fault zone as well as the affected lithologies. Our results indicate that the city is constructed on a similar to 20 m thick surficial layer consisting of poorly consolidated, highly porous, water-logged pumice. This soft layer is likely to amplify seismic waves and to liquefy upon moderate to strong ground shaking. The electrical conductivity as well as the major element chemistry of the groundwater provides evidence to suggest that the local aquifer might, at least in part, be fed by water rising along the fault. Therefore, the potential threat posed by this fault splay may not be limited to its seismic activity per se, but could be compounded its potential propensity to enhance seismic site effects by injecting water into the soft surficial sediments. The results of this study provide the basis for a rigorous analysis of seismic hazard and sustainable development of San Miguel Uspantan and illustrate the potential of ERT surveying for paleoseismic studies.
Resumo:
The presence of cavities filled with new minerals in carbonate rocks is a common feature in oil reservoirs and lead-zinc deposits. Since groundwater equilibrates rapidly with carbonates, the presence of dissolution cavities in deep carbonate host rocks is a paradox. Two alternative geochemical processes have been proposed to dissolve carbonates at depth: hydrogen sulfide oxidation to sulfuric acid, and metal sulfide precipitation. With the aid of geochemical modeling we show that mixing two warm solutions saturated with carbonate results in a new solution that dissolves limestone. Variations in the proportion of the end-member fluids can also form a supersaturated mixture and fill the cavity with a new generation of carbonate. Mixing is in general more effective in dissolving carbonates than the aforementioned processes. Moreover, mixing is consistent with the wide set of textures and mineral proportions observed in cavity infillings.
Resumo:
Application of wild-type or genetically-modified bacteria to the soil environment entails the risk of dissemination of these organisms to the groundwater. To measure vertical transport of bacteria under natural climatic conditions, Pseudomonas fluorescens strain CHA0 was released together with bromide as a mobile tracer at the surface of large outdoor lysimeters. Two experiments, one starting in autumn 1993 and the other in spring 1994 were performed. Shortly after a heavy rainfall in late spring 1994, the released bacteria were detected for the first time in effluent water from the 2.5-m-deep lysimeters in both experiments, i.e. 210 d and 21 d, respectively, after inoculation. Only a 10−9 to 10−8 fraction of the inoculum was recovered as culturable cells in the effluent water, but a larger fraction of the CHA0 cells was in a non-culturable state as detected with immunofluorescence microscopy. As much as 50% of the mobile tracer percolated through the lysimeters, indicating that, compared with bromide, bacterial cells were retained in soil. In the second part of this study, persistence of CHA0 in groundwater microcosms consisting of lysimeter effluent water was studied for 380 d. Survival of the inoculant as culturable cells was better under anaerobic than under aerobic conditions. However, a large fraction of the cells became non-culturable in both cases. When the experiment was performed with filter-sterilized effluent water, the total count of introduced bacteria did not decline with time. In conclusion, the biocontrol strain was transported in low numbers to a potential groundwater level under natural climatic conditions, but could persist for an extended period in groundwater microcosms.
Resumo:
Tobacco farmers of southern Brazil use high levels of fertilizers, without considering soil and environmental attributes, posing great risk to water resources degradation. The objective of this study was to monitor nitrate and ammonium concentrations in the soil solution of an Entisol in and below the root zone of tobacco under conventional tillage (CT), minimum tillage (MT) and no-tillage (NT). The study was conducted in the small-watershed Arroio Lino, in Agudo, State of Rio Grande do Sul, Brazil. A base fertilization of 850 kg ha-1 of 10-18-24 and topdressing of 400 kg ha-1 of 14-0-14 NPK fertilizer were applied. The soil solution was sampled during the crop cycle with a tension lysimeter equipped with a porous ceramic cup. Ammonium and nitrate concentrations were analyzed by the distillation and titration method. Nitrate concentrations, ranging from 8 to 226 mg L-1, were highest after initial fertilization and decreased during the crop cycle. The average nitrate (N-NO3-) concentration in the root zone was 75 in NT, 95 in MT, and 49 mg L-1 in CT. Below the root zone, the average nitrate concentration was 58 under NT, 108 under MT and 36 mg L-1 under CT. The nitrate and ammonium concentrations did not differ significantly in the management systems. However, the nitrate concentrations measured represent a contamination risk to groundwater of the watershed. The ammonium concentration (N-NH4+) decreased over time in all management systems, possibly as a result of the nitrification process and root uptake of part of the ammonium by the growing plants.
Resumo:
Soil porosity, especially pore size distribution, is an important controlling factor for soil infiltration, hydraulic conductivity, and water retention. This study aimed to verify the effect of secondary-treated domestic wastewater (STW) on the porosity of a sandy loam Oxisol in the city of Lins, state of São Paulo, Brazil. The two-year experiment was divided into three plots: soil cultivated with corn and sunflower and irrigated with STW, soil cultivated and irrigated with sodic groundwater, and non-irrigated and non-cultivated soil (control). At the end of the experiment, undisturbed core samples were sampled from 0 to 2.0 m (8 depths). The water retention curves were obtained by tension plates and Richard's pressure plate apparatus, and the pore size distribution inferred from the retention curves. It was found that irrigation with treated wastewater and treated groundwater led to a decrease in microporosity (V MI), defined as the pore class ranging from 0.2 to 50 μm diameter. On the other hand, a significant increase in cryptoporosity (V CRI) (< 0.2 μm) was identified throughout the soil profile. The presence of Na+ in both waters confirmed the role of this ion on pore size distribution and soil moisture (higher water retention).
Resumo:
In groundwater applications, Monte Carlo methods are employed to model the uncertainty on geological parameters. However, their brute-force application becomes computationally prohibitive for highly detailed geological descriptions, complex physical processes, and a large number of realizations. The Distance Kernel Method (DKM) overcomes this issue by clustering the realizations in a multidimensional space based on the flow responses obtained by means of an approximate (computationally cheaper) model; then, the uncertainty is estimated from the exact responses that are computed only for one representative realization per cluster (the medoid). Usually, DKM is employed to decrease the size of the sample of realizations that are considered to estimate the uncertainty. We propose to use the information from the approximate responses for uncertainty quantification. The subset of exact solutions provided by DKM is then employed to construct an error model and correct the potential bias of the approximate model. Two error models are devised that both employ the difference between approximate and exact medoid solutions, but differ in the way medoid errors are interpolated to correct the whole set of realizations. The Local Error Model rests upon the clustering defined by DKM and can be seen as a natural way to account for intra-cluster variability; the Global Error Model employs a linear interpolation of all medoid errors regardless of the cluster to which the single realization belongs. These error models are evaluated for an idealized pollution problem in which the uncertainty of the breakthrough curve needs to be estimated. For this numerical test case, we demonstrate that the error models improve the uncertainty quantification provided by the DKM algorithm and are effective in correcting the bias of the estimate computed solely from the MsFV results. The framework presented here is not specific to the methods considered and can be applied to other combinations of approximate models and techniques to select a subset of realizations
Resumo:
A two stage sampling strategy is necessary in order to optimize the study of distribution of pollution in soils and groundwater. First, detailed sampling from a limited area coupled with statistical analysis of the data are used to determine the microvariability of the parameter(s). The results from this detailed analysis are then used to calculate the optimal spacing between samples for the larger scale study. This two stage sampling strategy can result in significant financial savings during subsequent soil or groundwater remediation. This combined sampling and statistical analysis approach is illustrated with an example from a heavy metal contaminated site.