895 resultados para Gestural interface design
Resumo:
Knowmore (House of Commons) is a large scale generative interactive installation that incorporates embodied interaction, dynamic image creation, new furniture forms, touch sensitivity, innovative collaborative processes and multichannel generative sound creation. A large circular table spun by hand and a computer-controlled video projection falls on its top, creating an uncanny blend of physical object and virtual media. Participants’ presence around the table and how they touch it is registered, allowing up to five people to collaboratively ‘play’ this deeply immersive audiovisual work. Set within an ecological context, the work subtly asks what kind of resources and knowledges might be necessary to move us past simply knowing what needs to be changed to instead actually embodying that change, whilst hinting at other deeply relational ways of understanding and knowing the world. The work has successfully operated in two high traffic public environments, generating a subtle form of interactivity that allows different people to interact at different paces and speeds and with differing intentions, each contributing towards dramatic public outcomes. The research field involved developing new interaction and engagement strategies for eco-political media arts practice. The context was the creation of improved embodied, performative and improvisational experiences for participants; further informed by ‘Sustainment’ theory. The central question was, what ontological shifts may be necessary to better envision and align our everyday life choices in ways that respect that which is shared by all - 'The Commons'. The methodology was primarily practice-led and in concert with underlying theories. The work’s knowledge contribution was to question how new media interactive experience and embodied interaction might prompt participants to reflect upon the kind of resources and knowledges required to move past simply knowing what needs to be changed to instead actually embodying that change. This was achieved through focusing on the power of embodied learning implied by the works' strongly physical interface (i.e. the spinning of a full size table) in concert with the complex field of layered imagery and sound. The work was commissioned by the State Library of Queensland and Queensland Artworkers Alliance and significantly funded by The Australia Council for the Arts, Arts Queensland, QUT, RMIT Centre for Animation and Interactive Media and industry partners E2E Visuals. After premiering for 3 months at the State Library of Queensland it was curated into the significant ‘Mediations Biennial of Modern Art’ in Poznan, Poland. The work formed the basis of two papers, was reviewed in Realtime (90), was overviewed at Subtle Technologies (2010) in Toronto and shortlisted for ISEA 2011 Istanbul and included in the edited book/catalogue ‘Art in Spite of Economics’, a collaboration between Leonardo/ISAST (MIT Press); Goldsmiths, University of London; ISEA International; and Sabanci University, Istanbul.
Resumo:
Most departmental computing infrastructure reflects the state of networking technology and available funds at the time of construction, which converge in a preconceived notion of homogeneity of network architecture and usage patterns. The DMAN (Digital Media Access Network) project, a large-scale server and network foundation for the Hong Kong Polytechnic University's School of Design was created as a platform that would support a highly complex academic environment while giving maximum freedom to students, faculty and researchers through simplicity and ease of use. As a centralized multi-user computation backbone, DMAN faces an extremely hetrogeneous user and application profile, exceeding implementation and maintenance challenges of typical enterprise, and even most academic server set-ups. This paper sumarizes the specification, implementation and application of the system while describing its significance for design education in a computational context.
Resumo:
Previous work by Professor John Frazer on Evolutionary Architecture provides a basis for the development of a system evolving architectural envelopes in a generic and abstract manner. Recent research by the authors has focused on the implementation of a virtual environment for the automatic generation and exploration of complex forms and architectural envelopes based on solid modelling techniques and the integration of evolutionary algorithms, enhanced computational and mathematical models. Abstract data types are introduced for genotypes in a genetic algorithm order to develop complex models using generative and evolutionary computing techniques. Multi-objective optimisation techniques are employed for defining the fitness function in the evaluation process.
Resumo:
A computational framework for enhancing design in an evolutionary approach with a dynamic hierarchical structure is presented in this paper. This framework can be used as an evolutionary kernel for building computer-supported design systems. It provides computational components for generating, adapting and exploring alternative design solutions at multiple levels of abstraction with hierarchically structured design representations. In this paper, preliminary experimental results of using this framework in several design applications are presented.
Resumo:
Design as seen from the designer's perspective is a series of amazing imaginative jumps or creative leaps. But design as seen by the design historian is a smooth progression or evolution of ideas that they seem self-evident and inevitable after the event. But the next step is anything but obvious for the artist/creator/inventor/designer stuck at that point just before the creative leap. They know where they have come from and have a general sense of where they are going, but often do not have a precise target or goal. This is why it is misleading to talk of design as a problem-solving activity - it is better defined as a problem-finding activity. This has been very frustrating for those trying to assist the design process with computer-based, problem-solving techniques. By the time the problem has been defined, it has been solved. Indeed the solution is often the very definition of the problem. Design must be creative-or it is mere imitation. But since this crucial creative leap seem inevitable after the event, the question must arise, can we find some way of searching the space ahead? Of course there are serious problems of knowing what we are looking for and the vastness of the search space. It may be better to discard altogether the term "searching" in the context of the design process: Conceptual analogies such as search, search spaces and fitness landscapes aim to elucidate the design process. However, the vastness of the multidimensional spaces involved make these analogies misguided and they thereby actually result in further confounding the issue. The term search becomes a misnomer since it has connotations that imply that it is possible to find what you are looking for. In such vast spaces the term search must be discarded. Thus, any attempt at searching for the highest peak in the fitness landscape as an optimal solution is also meaningless. Futhermore, even the very existence of a fitness landscape is fallacious. Although alternatives in the same region of the vast space can be compared to one another, distant alternatives will stem from radically different roots and will therefore not be comparable in any straightforward manner (Janssen 2000). Nevertheless we still have this tantalizing possibility that if a creative idea seems inevitable after the event, then somehow might the process be rserved? This may be as improbable as attempting to reverse time. A more helpful analogy is from nature, where it is generally assumed that the process of evolution is not long-term goal directed or teleological. Dennett points out a common minsunderstanding of Darwinism: the idea that evolution by natural selection is a procedure for producing human beings. Evolution can have produced humankind by an algorithmic process, without its being true that evolution is an algorithm for producing us. If we were to wind the tape of life back and run this algorithm again, the likelihood of "us" being created again is infinitesimally small (Gould 1989; Dennett 1995). But nevertheless Mother Nature has proved a remarkably successful, resourceful, and imaginative inventor generating a constant flow of incredible new design ideas to fire our imagination. Hence the current interest in the potential of the evolutionary paradigm in design. These evolutionary methods are frequently based on techniques such as the application of evolutionary algorithms that are usually thought of as search algorithms. It is necessary to abandon such connections with searching and see the evolutionary algorithm as a direct analogy with the evolutionary processes of nature. The process of natural selection can generate a wealth of alternative experiements, and the better ones survive. There is no one solution, there is no optimal solution, but there is continuous experiment. Nature is profligate with her prototyping and ruthless in her elimination of less successful experiments. Most importantly, nature has all the time in the world. As designers we cannot afford prototyping and ruthless experiment, nor can we operate on the time scale of the natural design process. Instead we can use the computer to compress space and time and to perform virtual prototyping and evaluation before committing ourselves to actual prototypes. This is the hypothesis underlying the evolutionary paradigm in design (1992, 1995).