961 resultados para Forensics computer science


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Recommender systems are one of the recent inventions to deal with ever growing information overload. Collaborative filtering seems to be the most popular technique in recommender systems. With sufficient background information of item ratings, its performance is promising enough. But research shows that it performs very poor in a cold start situation where previous rating data is sparse. As an alternative, trust can be used for neighbor formation to generate automated recommendation. User assigned explicit trust rating such as how much they trust each other is used for this purpose. However, reliable explicit trust data is not always available. In this paper we propose a new method of developing trust networks based on user’s interest similarity in the absence of explicit trust data. To identify the interest similarity, we have used user’s personalized tagging information. This trust network can be used to find the neighbors to make automated recommendations. Our experiment result shows that the proposed trust based method outperforms the traditional collaborative filtering approach which uses users rating data. Its performance improves even further when we utilize trust propagation techniques to broaden the range of neighborhood.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Trust can be used for neighbor formation to generate automated recommendations. User assigned explicit rating data can be used for this purpose. However, the explicit rating data is not always available. In this paper we present a new method of generating trust network based on user’s interest similarity. To identify the interest similarity, we use user’s personalized tag information. This trust network can be used to find the neighbors to make automated recommendation. Our experiment result shows that the precision of the proposed method outperforms the traditional collaborative filtering approach.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In recent years, there is a dramatic growth in number and popularity of online social networks. There are many networks available with more than 100 million registered users such as Facebook, MySpace, QZone, Windows Live Spaces etc. People may connect, discover and share by using these online social networks. The exponential growth of online communities in the area of social networks attracts the attention of the researchers about the importance of managing trust in online environment. Users of the online social networks may share their experiences and opinions within the networks about an item which may be a product or service. The user faces the problem of evaluating trust in a service or service provider before making a choice. Recommendations may be received through a chain of friends network, so the problem for the user is to be able to evaluate various types of trust opinions and recommendations. This opinion or recommendation has a great influence to choose to use or enjoy the item by the other user of the community. Collaborative filtering system is the most popular method in recommender system. The task in collaborative filtering is to predict the utility of items to a particular user based on a database of user rates from a sample or population of other users. Because of the different taste of different people, they rate differently according to their subjective taste. If two people rate a set of items similarly, they share similar tastes. In the recommender system, this information is used to recommend items that one participant likes, to other persons in the same cluster. But the collaborative filtering system performs poor when there is insufficient previous common rating available between users; commonly known as cost start problem. To overcome the cold start problem and with the dramatic growth of online social networks, trust based approach to recommendation has emerged. This approach assumes a trust network among users and makes recommendations based on the ratings of the users that are directly or indirectly trusted by the target user.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

know personally. They also communicate with other members of the network who are the friends of their friends and may be friends of their friend’s network. They share their experiences and opinions within the social network about an item which may be a product or service. The user faces the problem of evaluating trust in a service or service provider before making a choice. Opinions, reputations and ecommendations will influence users' choice and usage of online resources. Recommendations may be received through a chain of friends of friends, so the problem for the user is to be able to evaluate various types of trust recommendations and reputations. This opinion or ecommendation has a great influence to choose to use or enjoy the item by the other user of the community. Users share information on the level of trust they explicitly assign to other users. This trust can be used to determine while taking decision based on any recommendation. In case of the absence of direct connection of the recommender user, propagated trust could be useful.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Road crashes cost world and Australian society a significant proportion of GDP, affecting productivity and causing significant suffering for communities and individuals. This paper presents a case study that generates data mining models that contribute to understanding of road crashes by allowing examination of the role of skid resistance (F60) and other road attributes in road crashes. Predictive data mining algorithms, primarily regression trees, were used to produce road segment crash count models from the road and traffic attributes of crash scenarios. The rules derived from the regression trees provide evidence of the significance of road attributes in contributing to crash, with a focus on the evaluation of skid resistance.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Linking real-time schedulability directly to the Quality of Control (QoC), the ultimate goal of a control system, a hierarchical feedback QoC management framework with the Fixed Priority (FP) and the Earliest-Deadline-First (EDF) policies as plug-ins is proposed in this paper for real-time control systems with multiple control tasks. It uses a task decomposition model for continuous QoC evaluation even in overload conditions, and then employs heuristic rules to adjust the period of each of the control tasks for QoC improvement. If the total requested workload exceeds the desired value, global adaptation of control periods is triggered for workload maintenance. A sufficient stability condition is derived for a class of control systems with delay and period switching of the heuristic rules. Examples are given to demonstrate the proposed approach.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

"How do you film a punch?" This question can be posed by actors, make-up artists, directors and cameramen. Though they can all ask the same question, they are not all seeking the same answer. Within a given domain, based on the roles they play, agents of the domain have different perspectives and they want the answers to their question from their perspective. In this example, an actor wants to know how to act when filming a scene involving a punch. A make-up artist is interested in how to do the make-up of the actor to show bruises that may result from the punch. Likewise, a director wants to know how to direct such a scene and a cameraman is seeking guidance on how best to film such a scene. This role-based difference in perspective is the underpinning of the Loculus framework for information management for the Motion Picture Industry. The Loculus framework exploits the perspective of agent for information extraction and classification within a given domain. The framework uses the positioning of the agent’s role within the domain ontology and its relatedness to other concepts in the ontology to determine the perspective of the agent. Domain ontology had to be developed for the motion picture industry as the domain lacked one. A rule-based relatedness score was developed to calculate the relative relatedness of concepts with the ontology, which were then used in the Loculus system for information exploitation and classification. The evaluation undertaken to date have yielded promising results and have indicated that exploiting perspective can lead to novel methods of information extraction and classifications.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The traditional Vector Space Model (VSM) is not able to represent both the structure and the content of XML documents. This paper introduces a novel method of representing XML documents in a Tensor Space Model (TSM) and then utilizing it for clustering. Empirical analysis shows that the proposed method is scalable for large-sized datasets; as well, the factorized matrices produced from the proposed method help to improve the quality of clusters through the enriched document representation of both structure and content information.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In vector space based approaches to natural language processing, similarity is commonly measured by taking the angle between two vectors representing words or documents in a semantic space. This is natural from a mathematical point of view, as the angle between unit vectors is, up to constant scaling, the only unitarily invariant metric on the unit sphere. However, similarity judgement tasks reveal that human subjects fail to produce data which satisfies the symmetry and triangle inequality requirements for a metric space. A possible conclusion, reached in particular by Tversky et al., is that some of the most basic assumptions of geometric models are unwarranted in the case of psychological similarity, a result which would impose strong limits on the validity and applicability vector space based (and hence also quantum inspired) approaches to the modelling of cognitive processes. This paper proposes a resolution to this fundamental criticism of of the applicability of vector space models of cognition. We argue that pairs of words imply a context which in turn induces a point of view, allowing a subject to estimate semantic similarity. Context is here introduced as a point of view vector (POVV) and the expected similarity is derived as a measure over the POVV's. Different pairs of words will invoke different contexts and different POVV's. Hence the triangle inequality ceases to be a valid constraint on the angles. We test the proposal on a few triples of words and outline further research.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Uncooperative iris identification systems at a distance suffer from poor resolution of the captured iris images, which significantly degrades iris recognition performance. Superresolution techniques have been employed to enhance the resolution of iris images and improve the recognition performance. However, all existing super-resolution approaches proposed for the iris biometric super-resolve pixel intensity values. This paper considers transferring super-resolution of iris images from the intensity domain to the feature domain. By directly super-resolving only the features essential for recognition, and by incorporating domain specific information from iris models, improved recognition performance compared to pixel domain super-resolution can be achieved. This is the first paper to investigate the possibility of feature domain super-resolution for iris recognition, and experiments confirm the validity of the proposed approach.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In the analysis of medical images for computer-aided diagnosis and therapy, segmentation is often required as a preliminary step. Medical image segmentation is a complex and challenging task due to the complex nature of the images. The brain has a particularly complicated structure and its precise segmentation is very important for detecting tumors, edema, and necrotic tissues in order to prescribe appropriate therapy. Magnetic Resonance Imaging is an important diagnostic imaging technique utilized for early detection of abnormal changes in tissues and organs. It possesses good contrast resolution for different tissues and is, thus, preferred over Computerized Tomography for brain study. Therefore, the majority of research in medical image segmentation concerns MR images. As the core juncture of this research a set of MR images have been segmented using standard image segmentation techniques to isolate a brain tumor from the other regions of the brain. Subsequently the resultant images from the different segmentation techniques were compared with each other and analyzed by professional radiologists to find the segmentation technique which is the most accurate. Experimental results show that the Otsu’s thresholding method is the most suitable image segmentation method to segment a brain tumor from a Magnetic Resonance Image.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Health information sharing has become a vital part of modern healthcare delivery. E-health technologies provide efficient and effective ways of sharing medical information, but give rise to issues that neither the medical professional nor the consumers have control over. Information security and patient privacy are key impediments that hinder sharing information as sensitive as health information. Health information interoperability is another issue which hinders the adoption of available e health technologies. In this paper we propose a solution for these problems in terms of information accountability, the HL7 interoperability standard and social networks for manipulating personal health records.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Online social networking has become one of the most popular Internet applications in the modern era. They have given the Internet users, access to information that other Internet based applications are unable to. Although many of the popular online social networking web sites are focused towards entertainment purposes, sharing information can benefit the healthcare industry in terms of both efficiency and effectiveness. But the capability to share personal information; the factor which has made online social networks so popular, is itself a major obstacle when considering information security and privacy aspects. Healthcare can benefit from online social networking if they are implemented such that sensitive patient information can be safeguarded from ill exposure. But in an industry such as healthcare where the availability of information is crucial for better decision making, information must be made available to the appropriate parties when they require it. Hence the traditional mechanisms for information security and privacy protection may not be suitable for healthcare. In this paper we propose a solution to privacy enhancement in online healthcare social networks through the use of an information accountability mechanism.