982 resultados para Fluid Balance
Resumo:
Con el objeto de proponer alternativas que contribuyan a mejorar la producción ganadera en la Hacienda Las Mercedes, de la UNA, se realizó el presente trabajo en el periodo de época seca de enero a mayo del 2009, el cual consistió en conocer la disponibilidad de cada uno de los pastos con que contaba la Hacienda, así mismo la demanda alimenticia por parte del ganado, ambos factores sirvieron para determinar el balance forrajero. Además de determinó el rendimiento de cada uno de los pastos a través del método de doble muestreo, propuesto por Haydock y Shaw, utilizando un marco de 0.25m2, para tomar las muestras de forraje en el campo y para hacer 20 determinaciones visuales en cada potrero. Se determinaron las alternativas a proponer para el mejor aprovechamiento de los pastos. Los resultados evidenciaron que en la Hacienda se cuenta con 16 mz empastadas, representando un 20% del área total de la misma, con dos especies Panicum maximum con dos cultivares (Mombaza y Tanzania) y Brachíaria brizantha con tres cultivares (Toledo, Mulato I y La libertad). Todos los cultivares evaluados presentaron declinación en la disponibilidad y rendimiento, conforme avanzaba la época seca, presentando reducciones de su biomasa de más del 80%. En los Panicum el cultivar Mombaza presentó la mejor disponibilidad con promedio de 5.7 ton de Ms y rendimiento promedio de 1 ton/ hay el Tanzania los más bajos con 0.24 ton de Ms y rendimiento promedio de 0.04 ton/ha. De los Brachiarias el cultivar Toledo presentó la mejor disponibilidad con 6.16 ton de Ms y rendimiento promedio de 1.07 ton/ha, seguido del cultivar Mulato con disponibilidad de 2.79 ton de Ms y rendimiento promedio de 0.39 ton/ha, siendo el cultivar La libertad el que presento el más bajo comportamiento de disponibilidad con 2.28 ton de Ms y rendimiento promedio de 0.40 ton/ha. Se encontró que todos los cultivares evaluados presentan un comportamiento productivo por debajo de la media de su potencial. Debido principalmente a falta de manejo en fertilización. En términos de balance se determinó que los problemas de alimentación se presentan a partir del mes de marzo y que se deben de tomar alternativas para los meses siguientes.
Resumo:
The transition process of intermittent flow in a longitudinal section of Bingham fluid from initial distribution to fully developed state was numerically investigated in this paper. The influences of slope dimensionless runoff Q* and viscosity μ0* on the dimensionless surge speed U* were also presented in a wide range of parameters. By one typical example, the intermittent flow possessed wave characteristics and showed a supercritical flow conformation for a fully developed flow. The distributions of gravity and bed drag along the flow path and the velocity distribution of flow field were also analyzed.
Resumo:
The influence of surfactant on the breakup of a prestretched bubble in a quiescent viscous surrounding is studied by a combination of direct numerical simulation and the solution of a long-wave asymptotic model. The direct numerical simulations describe the evolution toward breakup of an inviscid bubble, while the effects of small but non-zero interior viscosity are readily included in the long-wave model for a fluid thread in the Stokes flow limit. The direct numerical simulations use a specific but realizable and representative initial bubble shape to compare the evolution toward breakup of a clean or surfactant-free bubble and a bubble that is coated with insoluble surfactant. A distinguishing feature of the evolution in the presence of surfactant is the interruption of bubble breakup by formation of a slender quasi-steady thread of the interior fluid. This forms because the decrease in surface area causes a decrease in the surface tension and capillary pressure, until at a small but non-zero radius, equilibrium occurs between the capillary pressure and interior fluid pressure. The long-wave asymptotic model, for a thread with periodic boundary conditions, explains the principal mechanism of the slender thread's formation and confirms, for example, the relatively minor role played by the Marangoni stress. The large-time evolution of the slender thread and the precise location of its breakup are, however, influenced by effects such as the Marangoni stress and surface diffusion of surfactant. © 2008 Cambridge University Press.
Resumo:
Liu Qingquan, Singh V.P
Resumo:
Efforts have been made in growing bulk single crystals of GaN front supercritical fluids using the ammonothermal method, which utilizes ammonia as fluid rather than water as in the hydrothermal process. Different mineralizers such as amide or azide and temperatures in the range of 200-600degreesC have been used to increase the solubility. The pressure is from 1 to 4 kbar. Modeling of the ammonothermal growth process has been used to identify factors which may affect the temperature distribution, fluid flow and nutrient transport. The GaN charge is considered as a porous media bed and the flow in the charge is simulated using the Darcy-Brinkman-Forchheimer model. The resulting governing equations are solved using the finite volume method. The effects of baffle design and opening on flow pattern and temperature distribution in an autoclave are analyzed. Two cases are considered with baffle openings of 15% and 20% in cross-sectional area, respectively.
Two Bifurcation Transition Processes in Floating Half Zone Convection of Larger Prandtl Number Fluid
Resumo:
Processes of the onset oscillation in the thermocapillaxy convection under the Earth's gravity are investigated by the numerical simulation and experiments in a floating half zone of large Prandtl number with different volume ratio. Both computational and experimental results show that the steady and axisymmetric convection turns to the oscillatory convection of m=1 for the slender liquid bridge, and to the oscillatory convection before a steady and 3D asymmetric state for the case of a fat liquid bridge. It implies that, there are two critical Marangoni numbers related, respectively, to these two bifurcation transitions for the fat liquid bridge. The computational results agree with the results of ground-based experiments.
Resumo:
An algebraic unified second-order moment (AUSM) turbulence-chemistry model of char combustion is introduced in this paper, to calculate the effect of particle temperature fluctuation on char combustion. The AUSM model is used to simulate gas-particle flows, in coal combustion in a pulverized coal combustor, together with a full two-fluid model for reacting gas-particle flows and coal combustion, including the sub-models as the k-epsilon-k(p) two-phase turbulence niodel, the EBU-Arrhenius volatile and CO combustion model, and the six-flux radiation model. A new method for calculating particle mass flow rate is also used in this model to correct particle outflow rate and mass flow rate for inside sections, which can obey the principle of mass conservation for the particle phase and can also speed up the iterating convergence of the computation procedure effectively. The simulation results indicate that, the AUSM char combustion model is more preferable to the old char combustion model, since the later totally eliminate the influence of particle temperature fluctuation on char combustion rate.
Resumo:
A single-crystal silicon resonant bulk acoustic mass sensor with a measured resolution of 125 pg cm2 is presented. The mass sensor comprises a micromachined silicon plate that is excited in the square-extensional bulk acoustic resonant mode at a frequency of 2.182 MHz, with a quality factor exceeding 106. The mass sensor has a measured mass to frequency shift sensitivity of 132 Hz cm2 μg. The resonator element is embedded in a feedback loop of an electronic amplifier to implement an oscillator with a short term frequency stability of better than 7 ppb at an operating pressure of 3.8 mTorr. © 2007 American Institute of Physics.
Resumo:
The fluid flow associated with micro and meso scale devices is currently of interest. Experiments were performed to study the fluid flow in meso-scale channels. A straight flow tube was fabricated with 1.0x4.0mm^2 in rectangular cross section and 200mm in length, which was made of quartz for flow visualization and PIV measurements. Reynolds numbers were ranged from 311 to over 3105. The corresponding pressure drop was from 0.65KPa to over 16.58KPa between the inlet and outlet of the tube. The micro PIV was developed to measure the velocity distribution in the tube. A set of microscope object lens was mounted ahead of CCD camera to obtain optimized optical magnification on the CCD chip. The velocity distributions near the outlet of the tube were measured to obtain full-developed flow. A CW laser beam was focused directly on the test section by a cylinder lens to form a small light sheet. Thus, high power density of light was formed on the view region. It is very important to the experiment while the velocity of the flow reaches to a few meters per second within millimeter scale. In this case, it is necessary to reduce exposure time to microseconds for PIV measurements. In the present paper, the experimental results are compared with the classical theories.