917 resultados para Fatigue calculation
Resumo:
The second-order nonlinear optical tensor coefficients of both KTiOPO4 (KTP) and KTiOAsO4 (KTA) are calculated from the chemical bond viewpoint. All constituent chemical bonds of both crystals are considered, and contributions of each type of bond to the total linearity and nonlinearity are determined. Calculated results agree satisfactorily with experimental data in both signs and numerical values. The calculation shows that though TiO6 groups and P(1)O-4 or As(1)O-4 groups have relatively larger linear contributions, they can only produce an advantageous environment for KOx (x = 8, 9) groups and P(2)O-4 or As(2)O-4 groups in nonlinear optical contributions. The origin of nonlinearity of KTP family crystals comes from the KOx (x = 8, 9) and P(2)O-4 groups in their crystal structures. Furthermore, the difference in optical nonlinearities of KTP type crystals is analyzed, based on the detailed calculation of nonlinearities of both KTP and KTA. (C) 1999 Academic Press.
Resumo:
The protonation process of two DTPA bis(amide) derivatives, DTPA-BDMA and DTPA-BDEA, was studied by using H-1 NMR titration and MOPAC calculation. Their protonation process was proposed in the order of the central amine, the terminal amines, the central carboxyl, the terminal carboxyl, the other terminal carboxyl and central amine. During the protonation of the terminal amine, there existed a large fraction of proton transfer from the central amine to the other terminal amine.
Resumo:
From the chemical bond viewpoint, the second-order nonlinear optical (NLO) tensor coefficients of some Re-2(MoO4)(3) (ReMO)-type tare earth molybdates, with Re = Pr, Nd, Sm, Eu, Gd, Tb and Dy, have been calculated by using the chemical bond theory of complex crystals and the modified bond charge model. All kinds of constituent chemical bonds are considered in the calculation. The major part of the NLO properties of these ReMO crystals is found from the ReO7 groups. The NLO coefficients of these ReMO crystals decrease with Re from Pr to Dy. (C) 1998 Elsevier Science Ltd. All rights reserved.
Resumo:
The second-order nonlinear optical (NLO) tensor coefficients of KNdP4O12 (KNP) are theoretically predicted from its crystal structural data, by using the chemical bond theory of complex crystals and the modified bond charge model. Linear and nonlinear optical contributions of each type of bond to the total linearity (chi) and nonlinearity (d(ij)) of KNP are quantitatively determined. The structure-property relationship of KNP is systematically investigated, from the chemical bond viewpoint. Based on the discussion of its structural modifications, we point out that NLO properties of I(NP can be improved effectively using the doping method. Theoretical predictions show KNP to be a promising: self-frequency-doubling laser material.
Resumo:
Second order nonlinear optical (NLO) tensor coefficients of LiXO3 (X = I, Nb, Ta) type crystals have been evaluated on the basis of the dielectric theory of complex crystals and the modified bond charge model. The current method is capable of calculating single bond contributions to the total second order NLO susceptibility. The tenser values thus calculated agree well with experimental data. By introducing the subformula equation and the concept of the effective charge of one valence electron, we are able to successfully treat such complex crystals as LiXO3 type compounds. In addition, the bond charge expression is modified to a more reasonable form for complex crystals. (C) 1998 Elsevier Science B.V.
Resumo:
A quantitative investigation of structure-property relationships has been carried out in the nonlinear optical crystals K2Ce(NO3)(5) . 2H(2)O and K2La(NO3)(5) . 2H(2)O, from the chemical bond viewpoint. Chemical bond parameters and linear and nonlinear optical properties of each type of constituent chemical bond of both crystals are calculated. Theoretical results agree reasonably with experimental data, and explain quantitatively their nonlinear origins in this type of crystal. This theoretical method allows us to calculate accurately the nonlinearities of complex crystals.
Resumo:
Flexural fatigue tests were conducted on injection-molded short fiber composites, carbon fiber/poly(phenylene ether ketone) (PEK-C) and glass fiber/PEK-C (with addition of polyphenylene sulfide for improving adhesion between matrix and fibers), using four-point bending at stress ratio of 0.1. The fatigue behavior of these materials was presented. By comparing the S-N curves and analyzing the fracture surfaces of the two materials, the similarity and difference of the failure mechanisms in the two materials were discussed. It is shown that the flexural fatigue failure of the studied materials is governed by their respective tensile properties. The matrix yielding is main failure mechanism at high stress, while at lower stress the fatigue properties appear fiber and interface dominated. (C) 1997 John Wiley & Sons, Inc.
Resumo:
The present work investigates the effects of cyclic fatigue loading on the residual properties of an injection-molded composite, carbon-fiber-reinforced poly(phenylene ether ketone) (CF/PEK-C), and damage development in this material under fatigue lending. Test specimens, which had been conditioned to various preselected fatigue damage stages, were measured for their residual properties. The results indicated that cyclic fatigue loading alters the constitutive behavior of the injection-molded composite, especially in the non-linear portion of the stress/strain curve. The residual strength decreases with increase in the number of fatigue cycles as a consequence of the accumulation of fatigue damage, which is dominated by the growth of microcracks. While the residual modulus increases slightly with cyclic fatigue loading, this is probably due to the oriented hardening resulting from creep deformation which is induced during cyclic loading. (C) 1997 Elsevier Science Limited.
Resumo:
A theoretical method has been set up to calculate the electrooptic tensor coefficients r(ijk), based on the Phillips-Van Vechten (PV) dielectric theory and the Levine bond charge model, Starting from the crystal structure data and only introducing the experimentally determined optical permittivity and dielectric constant, the electro-optic tensor coefficients r(ijk) can be quantitatively predicted, The theoretical calculations are in good agreement with experiment in the case of zinc blende and wurtzite crystals, For zinc blende crystals, the effects of covalent radii on the linear electro-optic coefficients are discussed. (C) 1997 Academic Press.
Resumo:
Tension-tension fatigue tests were conducted on unnotched injection moulded poly(phenylene ether ketone) (PEK-C) specimens with two stress ratios, R. The fatigue behaviour of this material is described. The S-N curves (S = alternating stress, N = number of cycles to failure) for different R values have the same general shape, but the curve for bigger R is shifted to long cycles. A fatigue lifetime inversion is observed from constructed S-N curves. Examinations of failure surfaces and analyses of the fatigue data reveal that the fatigue failure mechanism of the material studied is crack growth dominated. But the manner of the fatigue crack initiation and propagation depends on the maximum cyclic stress applied. At higher stresses, the fatigue crack originates at the corner of the specimen and propagates inward; at lower stresses, the fatigue crack nucleates at an internal flaw of the specimen and propagates outward. The fatigue lifetime inversion corresponds to the transition of crack initiation and propagation from one mode to the other. Copyright (C) 1996 Elsevier Science Ltd.
Resumo:
For the first time, we present the calculation of the nonlinear optical coefficient of the NdAl3(BO3)(4) (NAB) crystal from a systematic and quantitative standpoint. Based on the dielectric theory of complex crystals and the Levine bond charge model, the method of calculation of the second-order nonlinear optical tensor coefficients of complex crystals has been given systematically. The chemical bond parameters and linear and nonlinear susceptibilities of the NAB crystal have been calculated in detail, and the calculated value of d(11)(NAB) is -5.81 x 10(-9) esu, which agrees with the measured value of 4.06 x 10(-9) esu.
Resumo:
Flexural fatigue tests were performed on an injection-moulded glass-fiber reinforced blend of polyphenylene ether ketone and polyphenylene sulfide composite using four-point bending at a series of fixed mean stress levels with varying stress amplitude. Attention was given to identifying the effects of mean stress and stress amplitude on the fatigue life and failure mechanisms. It was found that the fatigue life of the studied material decreased sharply with increasing stress amplitude at a constant mean stress level and also decreased at a fixed stress amplitude with increasing mean stress. However, analyses of the fatigue data and failure behaviour reveal that, for the studied material, fatigue failure mechanisms depend on the relative importance of mean stress and stress amplitude. At a mean stress level of 80% ultimate flexural strength, the failure results from accumulation of creep strain, while at mean stress levels of 40%, 50% and 60% ultimate flexural strength, the magnitude of stress amplitude influences the type of failure mechanism. As stress amplitude is reduced, the fatigue failure mechanism changes from matrix yielding dominated to crack growth dominated fracture.
Resumo:
In this paper, based on the consideration of covalent behavior of adjacent ions in crystals, a calculation formula of lattice energy was proposed. In which, the concept of ionic effective valence and the empirical formula covalent energy were introduced,
Resumo:
The structures of CH5O+ from two different reactions which are protonation of CH3OH from the above two pathways possess the same structures, CH3OH2+. The value of kinetic energy release for the metastable decomposition CH2OH3+-> CH2OH+ + H-2 determined from the experiment is in good agreement with that from theoretical calculations. The transition state of above reaction were disscussed.
Resumo:
We studied several inclusion complexes of beta-CD by means of molecular mechanical calculation. The inclusion process and the driving force were discussed, and the conclusion on stability agrees with the results of electrochemical experiments.