866 resultados para FAT MASS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The complete structural elucidation of complex lipids, including glycerophospholipids, using only mass spectrometry represents a major challenge to contemporary analytical technologies. Here, we demonstrate that product ions arising from the collision-induced dissociation (CID) of the [M + Na] + adduct ions of phospholipids can be isolated and subjected to subsequent gas-phase ozonolysis-known as ozone-induced dissociation (OzID)-in a linear ion-trap mass spectrometer. The resulting CID/OzID experiment yields abundant product ions that are characteristic of the acyl substitution on the glycerol backbone (i.e., sn-position). This approach is shown to differentiate sn-positional isomers, such as the regioisomeric phosphatidylcholine pair of PC 16:0/18:1 and PC 18:1/16:0. Importantly, CID/OzID provides a sensitive diagnostic for the existence of an isomeric mixture in a given sample. This is of very high value for the analysis of tissue extracts since CID/OzID analyses can reveal changes in the relative abundance of isomeric constituents even within different tissues from the same animal. Finally, we demonstrate the ability to assign carbon-carbon double bond positions to individual acyl chains at specific backbone positions by adding subsequent CID and/or OzID steps to the workflow and that this can be achieved in a single step using a hybrid triple quadrupole-linear ion trap mass spectrometer. This unique approach represents the most complete and specific structural analysis of lipids by mass spectrometry demonstrated to date and is a significant step towards comprehensive top-down lipidomics. This journal is © The Royal Society of Chemistry 2014. Grant Number ARC/DP0986628, ARC/FT110100249, ARC/LP110200648

Relevância:

20.00% 20.00%

Publicador:

Resumo:

RATIONALE Both traditional electron ionization and electrospray ionization tandem mass spectrometry have demonstrated limitations in the unambiguous identification of fatty acids. In the former case, high electron energies lead to extensive dissociation of the radical cations from which little specific structural information can be obtained. In the latter, conventional collision-induced dissociation (CID) of even-electron ions provides little intra-chain fragmentation and thus few structural diagnostics. New approaches that harness the desirable features of both methods, namely radical-driven dissociation with discrete energy deposition, are thus required. METHODS Herein we describe the derivatization of a structurally diverse suite of fatty acids as 4-iodobenzyl esters (FAIBE). Electrospray ionization of these derivatives in the presence of sodium acetate yields abundant [M+Na]+ ions that can be mass-selected and subjected to laser irradiation (=266nm) on a modified linear ion-trap mass spectrometer. RESULTS Photodissociation (PD) of the FAIBE derivatives yields abundant radical cations by loss of atomic iodine and in several cases selective dissociation of activated carboncarbon bonds (e.g., at allylic positions) are also observed. Subsequent CID of the [M+NaI]center dot+ radical cations yields radical-directed dissociation (RDD) mass spectra that reveal extensive carboncarbon bond dissociation without scrambling of molecular information. CONCLUSIONS Both PD and RDD spectra obtained from derivatized fatty acids provide a wealth of structural information including the position(s) of unsaturation, chain-branching and hydroxylation. The structural information obtained by this approach, in particular the ability to rapidly differentiate isomeric lipids, represents a useful addition to the lipidomics tool box. Copyright (c) 2013 John Wiley & Sons, Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose. To establish a simple and rapid analytical method, based on direct insertion/electron ionization-mass spectrometry (DI/EI-MS), for measuring free cholesterol in tears from humans and rabbits. Methods. A stable-isotope dilution protocol employing DI/EI-MS in selected ion monitoring mode was developed and validated. It was used to quantify the free cholesterol content in human and rabbit tear extracts. Tears were collected from adult humans (n = 15) and rabbits (n = 10) and lipids extracted. Results. Screening, full-scan (m/z 40-600) DI/EI-MS analysis of crude tear extracts showed that diagnostic ions located in the mass range m/z 350 to 400 were those derived from free cholesterol, with no contribution from cholesterol esters. DI/EI-MS data acquired using selected ion monitoring (SIM) were analyzed for the abundance ratios of diagnostic ions with their stable isotope-labeled analogues arising from the D6-cholesterol internal standard. Standard curves of good linearity were produced and an on-probe limit of detection of 3 ng (at 3:1 signal to noise) and limit of quantification of 8 ng (at 10:1 signal to noise). The concentration of free cholesterol in human tears was 15 ± 6 μg/g, which was higher than in rabbit tears (10 ± 5 μg/g). Conclusions. A stable-isotope dilution DI/EI-SIM method for free cholesterol quantification without prior chromatographic separation was established. Using this method demonstrated that humans have higher free cholesterol levels in their tears than rabbits. This is in agreement with previous reports. This paper provides a rapid and reliable method to measure free cholesterol in small-volume clinical samples. © 2013 The Association for Research in Vision and Ophthalmology, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The double burden of childhood undernutrition and adult-onset adiposity in transitioning societies poses a significant public health challenge. The development of suboptimal lean body mass (LBM) could partly explain the link between these two forms of malnutrition. This review examines the evidence on both the role of nutrition in “developmental programming” of LBM and the nutritional influences that affect LBM throughout the life course. Studies from developing countries assessing the relationship of early nutrition with later LBM provide important insights. Overall, the evidence is consistent in suggesting a positive association of early nutritional status (indicated by birth weight and growth during first 2 years) with LBM in later life. Evidence on the impact of maternal nutritional supplementation during pregnancy on later LBM is inconsistent. In addition, the role of nutrients (protein, zinc, calcium, vitamin D) that can affect LBM throughout the life course is described. Promoting optimal intakes of these important nutrients throughout the life course is important for reducing childhood undernutrition as well as for improving the LBM of adults.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This cross-sectional study of a 45 to 60 year old Brisbane population examined socioeconomic differences in campaign reach, understanding of health language, and effectiveness, of a recent mass media health promotion campaign. Lower socioeconomic groups were reached significantly less and understood significantly less of the health language than higher socioeconomic groups thus contributing to the widening of the health inequality gap.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aim The International Classification of Diseases, version 10, Australian modification (ICD-10-AM) is used to classify diseases in hospital patients in Australia and New Zealand. ICD-10-AM defines malnutrition as ‘[body mass index] BMI <18.5 kg/m2 or unintentional weight loss of ≥5% with evidence of suboptimal intake resulting in subcutaneous fat loss and/or muscle wasting’. The Australasian Nutrition Care Day Survey (ANCDS) is the most comprehensive survey to evaluate malnutrition prevalence in acute care patients from Australian and New Zealand hospitals. This study determined if malnourished participants were assigned malnutrition-related codes according to ICD-10-AM. Methods The ANCDS recruited acute care patients from 56 hospitals. Hospital-based dietitians evaluated participants' nutritional status using BMI and Subjective Global Assessment (SGA). In keeping with the ICD-10-AM definition, malnutrition was defined as BMI <18.5 kg/m2, SGA-B (moderately malnourished) or SGA-C (severely malnourished). After 3 months, in this prospective cohort study, staff members from each hospital's health information/medical records department provided coding results for malnourished participants. Results Malnutrition was prevalent in 30% (n = 869) of the cohort (n = 2976) and a significantly small number of malnourished patients were coded for malnutrition (n = 162, 19%, P < 0.001). In 21 hospitals, none of the malnourished participants were coded. Conclusions This is the largest study to provide a snapshot of malnutrition coding in Australian and New Zealand hospitals. Findings highlight gaps in malnutrition documentation and/or subsequent coding, which could potentially result in significant loss of casemix-related revenue for hospitals. Dietitians must lead the way in developing structured processes for malnutrition identification, documentation and coding.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tumour necrosis factor (TNF)alpha is implicated in the relationship between obesity and insulin resistance/ type 2 diabetes. In an effort to understand this association better we (i) profiled gene expression patterns of TNF, TNFR1 and TNFR2 and (ii) investigated the effects of TNF on glucose uptake in isolated adipocytes and adipose tissue explants from omental and subcutaneous depots from lean, overweight and obese individuals. TNF expression correlated with expression of TNFR2, but not TNFR1, and TNF and TNFR2 expression increased in obesity. TNFR1 expression was higher in omental than in subcutaneous adipocytes. Expression levels of TNF or either receptor did not differ between adipocytes from individuals with central and peripheral obesity. TNF only suppressed glucose uptake in insulin-stimulated subcutaneous tissue and this suppression was only observed in tissue from lean subjects. These data support a relationship between the TNF system and body mass index (BMI), but not fat distribution, and suggest depot specificity of the TNF effect on glucose uptake. Furthermore, adipose tissue from obese subjects already appears insulin 'resistant' and this may be a result of the increased TNF levels.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Previous studies have shown that the human lens contains glycerophospholipids with ether linkages. These lipids differ from conventional glycerophospholipids in that the sn-1 substituent is attached to the glycerol backbone via an 1-O-alkyl or an 1-O-alk-1'-enyl ether rather than an ester bond. The present investigation employed a combination of collision-induced dissociation (CID) and ozone-induced dissociation (OzID) to unambiguously distinguish such 1-O-alkyl and 1-O-alk-1'-enyl ethers. Using these methodologies the human lens was found to contain several abundant 1-O-alkyl glycerophos-phoethanolamines, including GPEtn(16:0e/9Z-18:1), GPEtn(11Z-18:1e/9Z-18:1), and GPEtn(18:0e/9Z-18:1), as well as a related series of unusual 1-O-alkyl glycerophosphoserines, including GPSer(16:0e/9Z-18:1), GPSer(11Z-18:1e/9Z-18:1), GPSer(18:0e/9Z-18:1) that to our knowledge have not previously been observed in human tissue. Isomeric 1-O-alk-1'-enyl ethers were absent or in low abundance. Examination of the double bond position within the phospholipids using OzID revealed that several positional isomers were present, including sites of unsaturation at the n-9, n-7, and even n-5 positions. Tandem CID/OzID experiments revealed a preference for double bonds in the n-7 position of 1-O-ether linked chains, while n-9 double bonds predominated in the ester-linked fatty acids [e.g., GPEtn(11Z-18:1e/9Z-18:1) and GPSer(11Z-18:1e/9Z-18:1)]. Different combinations of these double bond positional isomers within chains at the sn-1 and sn-2 positions point to a remarkable molecular diversity of ether-lipids within the human lens.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Contemporary lipidomics protocols are dependent on conventional tandem mass spectrometry for lipid identification. This approach is extremely powerful for determining lipid class and identifying the number of carbons and the degree of unsaturation of any acyl-chain substituents. Such analyses are however, blind to isomeric variants arising from different carbon carbon bonding motifs within these chains including double bond position, chain branching, and cyclic structures. This limitation arises from the fact that conventional, low energy collision-induced dissociation of even-electron lipid ions does not give rise to product ions from intrachain fragmentation of the fatty acyl moieties. To overcome this limitation, we have applied radical-directed dissociation (RDD) to the study of lipids for the first time. In this approach, bifunctional molecules that contain a photocaged radical initiator and a lipid-adducting group, such as 4-iodoaniline and 4-iodobenzoic acid, are used to form noncovalent complexes (i.e., adduct ions) with a lipid during electrospray ionization. Laser irradiation of these complexes at UV wavelengths (266 nm) cleaves the carbon iodine bond to liberate a highly reactive phenyl radical. Subsequent activation of the nascent radical ions results in RDD with significant intrachain fragmentation of acyl moieties. This approach provides diagnostic fragments that are associated with the double bond position and the positions of chain branching in glycerophospholipids, sphingomyelins and triacylglycerols and thus can be used to differentiate isomeric lipids differing only in such motifs. RDD is demonstrated for well-defined lipid standards and also reveals lipid structural diversity in olive oil and human very-low density lipoprotein.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The position(s) of carbon-carbon double bonds within lipids can dramatically affect their structure and reactivity and thus has a direct bearing on biological function. Commonly employed mass spectrometric approaches to the characterization of complex lipids, however, fail to localize sites of unsaturation within the molecular structure and thus cannot distinguish naturally occurring regioisomers. In a recent communication \[Thomas, M. C.; Mitchell, T. W.; Blanksby, S. J. J. Am. Chem. Soc. 2006, 128, 58-59], we have presented a new technique for the elucidation of double bond position in glycerophospholipids using ozone-induced fragmentation within the source of a conventional electrospray ionization mass spectrometer. Here we report the on-line analysis, using ozone electrospray mass spectrometry (OzESI-MS), of a broad range of common unsaturated lipids including acidic and neutral glycerophospholipids, sphingomyelins, and triacylglycerols. All lipids analyzed are found to form a pair of chemically induced fragment ions diagnostic of the position of each double bond(s) regardless of the polarity, the number of charges, or the adduction (e.g., \[M - H](-), \[M - 2H](2-), \[M + H](+), \[M + Na](+), \[M + NH4](+)). The ability of OzESI-MS to distinguish lipids that differ only in the position of the double bonds is demonstrated using the glycerophosphocholine standards, GPCho(9Z-18:1/9Z-18:1) and GPCho(6Z-18:1/6Z-18:1). While these regioisomers cannot be differentiated by their conventional tandem mass spectra, the OzESI-MS spectra reveal abundant fragment ions of distinctive mass-to-charge ratio (m/z). The approach is found to be sufficiently robust to be used in conjunction with the m/z 184 precursor ion scans commonly employed for the identification of phosphocholine-containing lipids in shotgun lipidomic analyses. This tandem OzESI-MS approach was used, in conjunction with conventional tandem mass spectral analysis, for the structural characterization of an unknown sphingolipid in a crude lipid extract obtained from a human lens. The OzESI-MS data confirm the presence of two regioisomers, namely, SM(d18:0/15Z-24:1) and SM(d18:0/17Z-24:1), and suggest the possible presence of a third isomer, SM(d18:0/19Z-24:1), in lower abundance. The data presented herein demonstrate that OzESI-MS is a broadly applicable, on-line approach for structure determination and, when used in conjunction with established tandem mass spectrometric methods, can provide near complete structural characterization of a range of important lipid classes. As such, OzESI-MS may provide important new insight into the molecular diversity of naturally occurring lipids.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ions formed from lipids during electrospray ionization of crude lipid extracts have been mass-selected within a quadrupole linear ion trap mass spectrometer and allowed to react with ozone vapor. Gas-phase ion-molecule reactions between unsaturated lipid ions and ozone are found to yield two primary product ions for each carbon-carbon double bond within the molecule. The mass-to-charge ratios of these chemically induced fragments are diagnostic of the position of unsaturation within the precursor ion. This novel analytical technique, dubbed ozone-induced dissociation (OzID), can be applied both in series and in parallel with conventional collision-induced dissociation (CID) to provide near-complete structural assignment of unknown lipids within complex mixtures without prior fractionation or derivatization. In this study, OzID is applied to a suite of complex lipid extracts from sources including human lens, bovine kidney, and commercial olive oil, thus demonstrating the technique to be applicable to a broad range of lipid classes including both neutral and acidic glycerophospholipids, sphingomyelins, and triacylglycerols. Gas-phase ozonolysis reactions are also observed with different types of precursor ions including \[M + H](+), \[M + Li](+), \[M + Na](+), and \[M H](-): in each case yielding fragmentation data that allow double bond position to be unambiguously assigned. Within the human lens lipid extract, three sphingomyelin regioisomers, namely SM(d18:0/15Z-24:1), SM(d18:0/17Z-24:1), and SM(d18:0/19Z-24:1), and a novel phosphatidylethanolamine alkyl ether, GPEtn(11Z-18:1e/9Z18:1), are identified using a combination of CID and OzID. These discoveries demonstrate that lipid identification based on CID alone belies the natural structural diversity in lipid biochemistry and illustrate the potential of OzID as a complementary approach within automated, high-throughput lipid analysis protocols.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In order to assist with the development of more selective and sensitive methods for thyroid hormone analysis the \[M-H](-) anions of the iodothyronines T4, T3, rT3, (3,5)-T2 and the non-iodinated thyronine (TO) have been generated by negative ion electrospray mass spectrometry. Tandem mass spectra of these ions were recorded on a triple-quadrupole mass spectrometer and show a strong analogy with the fragmentation pathways of the parent compound, tyrosine. All iodothyronines also show significant abundances of the iodide anion in their tandem mass spectra, which represents an attractive target for multiple reaction monitoring (MRM) analysis, given that iodothyronines are the only iodine bearing endogenous molecules. Characteristic fragments are observed at m/z 359.7 and 604.5 for rT3 but are absent in the spectrum of T3, thus differentiating the two positional isomers. The striking difference in the fragmentation patterns of these regioisomeric species is attributed to the increased acidity of the phenol moiety in rT3 compared with T3. Copyright (C) 2005 John Wiley & Sons, Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Amiton (O,O-diethyl-S-[2-(diethylamino)ethyl]phosphorothiolate), otherwise known as VG, is listed in schedule 2 of the Chemical Weapons Convention (CWC) and has a structure closely related to VX (O-ethyl-S-(2-diisopropylamino)ethylmethylphosphonothiolate). Fragmentation of protonated VG in the gas phase was performed using electrospray ionisation ion trap mass spectrometry (ESI-ITMS) and revealed several characteristic product ions. Quantum chemical calculations provide the most probable structures for these ions as well as the likely unimolecular mechanisms by which they are formed. The decomposition pathways predicted by computation are consistent with deuterium-labeling studies. The combination of experimental and theoretical data suggests that the fragmentation pathways of VG and analogous organophosphorus nerve agents, such as VX and Russian VX, are predictable and thus ESI tandem mass spectrometry is a powerful tool for the verification of unknown compounds listed in the CWC. Copyright (c) 2006 Commonwealth of Australia. Published by John Wiley & Sons, Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

RATIONALE: Polymer-based surface coatings in outdoor applications experience accelerated degradation due to exposure to solar radiation, oxygen and atmospheric pollutants. These deleterious agents cause undesirable changes to the aesthetic and mechanical properties of the polymer, reducing its lifetime. The use of antioxidants such as hindered amine light stabilisers (HALS) retards these degradative processes; however, mechanisms for HALS action and polymer degradation are poorly understood. METHODS: Detection of the HALS TINUVINW123 (bis(1-octyloxy-2,2,6,6-tetramethyl-4-piperidyl) sebacate) and the polymer degradation products directly from a polyester-based coil coating was achieved by liquid extraction surface analysis (LESA) coupled to a triple quadrupole QTRAPW 5500 mass spectrometer. The detection of TINUVINW123 and melamine was confirmed by the characteristic fragmentation pattern observed in LESA-MS/MS spectra that was identical to that reported for authentic samples. RESULTS: Analysis of an unstabilised coil coating by LESA-MS after exposure to 4 years of outdoor field testing revealed the presence of melamine (1,3,5-triazine-2,4,6-triamine) as a polymer degradation product at elevated levels. Changes to the physical appearance of the coil coating, including powder-like deposits on the coating's surface, were observed to coincide with melamine deposits and are indicative of the phenomenon known as polymer ' blooming'. CONCLUSIONS: For the first time, in situ detection of analytes from a thermoset polymer coating was accomplished without any sample preparation, providing advantages over traditional extraction-analysis approaches and some contemporary ambient MS methods. Detection of HALS and polymer degradation products such as melamine provides insight into the mechanisms by which degradation occurs and suggests LESA-MS is a powerful new tool for polymer analysis. Copyright (C) 2012 John Wiley & Sons, Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

High valent metal(IV)-oxo species, \[M(=O)(Melm)(n)(OAc)](+) (M = Mn-Ni, MeIm = 1-methylimidazole, n = 1-2), which are relevant to biology and oxidative catalysis, were produced and isolated in gas-phase reactions of the metal(II) precursor ions \[M(MeIm)(n)(OAc)](+) (M = Mn-Zn, n = 1-3) with ozone. The precursor ions \[M(MeIm)(OAc)](+) and \[M(MeIm)(2)(OAc)](+) were generated via collision-induced dissociation of the corresponding \[M(MeIm)(3)(OAc)](+) ion. The dependence of ozone reactivity on metal and coordination number is discussed. Copyright (C) 2010 John Wiley & Sons, Ltd.