960 resultados para Exhaled Respiratory Droplets
Resumo:
In this study we investigated energy metabolism in the mdx mouse brain. To this end, prefrontal cortex, cerebellum, hippocampus, striatum, and cortex were analyzed. There was a decrease in Complex I but not in Complex 11 activity in all structures. There was an increase in Complex III activity in striatum and a decrease in Complex IV activity in prefrontal cortex and striatum. Mitochondrial creatine kinase activity was increased in hippocampus, prefrontal cortex, cortex, and striatum. Our results indicate that there is energy metabolism dysfunction in the mdx mouse brain. Muscle Nerve 41: 257-260, 2010
Resumo:
The reported effects of different families of fatty acids (FA; SFA, MUFA, n-3 and n-6 PUFA) on human health and the importance of macrophage respiratory burst and cytokine release to immune defence led us to examine the influence of palmitic acid (PA), oleic acid (OA), linoleic acid, arachidonic acid, EPA and DHA on macrophage function. We determined fungicidal activity, reactive oxygen species (ROS) and cytokine production after the treatment of J774 cells with non-toxic concentrations of the FA. PA had a late and discrete stimulating effect on ROS production, which may be associated with the reduced fungicidal activity of the cells after treatment with this FA. OA presented a sustained stimulatory effect on ROS production and increased fungicidal activity of the cells, suggesting that enrichment of diets with OA may be beneficial for pathogen elimination. The effects of PUFA on ROS production were time-and dose-dependently regulated, with no evident differences between n-3 and n-6 PUFA. It was worth noting that most changes induced after stimulation of the cells with lipopolysaccharide were suppressed by the FA. The present results suggest that supplementation of the diet with specific FA, not classes of FA, might enable an improvement in host defence mechanisms or a reduction in adverse immunological reactions.
Resumo:
At surgical depths of anesthesia, inhalational anesthetics cause a loss of motor response to painful stimuli (i.e., immobilization) that is characterized by profound inhibition of spinal motor circuits. Yet, although clearly depressed, the respiratory motor system continues to provide adequate ventilation under these same conditions. Here, we show that isoflurane causes robust activation of CO(2)/pH-sensitive, Phox2b-expressing neurons located in the retrotrapezoid nucleus (RTN) of the rodent brainstem, in vitro and in vivo. In brainstem slices from Phox2b-eGFP mice, the firing of pH-sensitive RTN neurons was strongly increased by isoflurane, independent of prevailing pH conditions. At least two ionic mechanisms contributed to anesthetic activation of RTN neurons: activation of an Na(+)-dependent cationic current and inhibition of a background K(+) current. Single-cell reverse transcription-PCR analysis of dissociated green fluorescent protein-labeled RTN neurons revealed expression of THIK-1 (TWIK-related halothane-inhibited K(+) channel, K(2P)13.1), a channel that shares key properties with the native RTN current (i.e., suppression by inhalational anesthetics, weak rectification, inhibition by extracellular Na(+), and pH-insensitivity). Isoflurane also increased firing rate of RTN chemosensitive neurons in urethane-anesthetized rats, again independent of CO(2) levels. In these animals, isoflurane transiently enhanced activity of the respiratory system, an effect that was most prominent at low levels of respiratory drive and mediated primarily by an increase in respiratory frequency. These data indicate that inhalational anesthetics cause activation of RTN neurons, which serve an important integrative role in respiratory control; the increased drive provided by enhanced RTN neuronal activity may contribute, in part, to maintaining respiratory motor activity under immobilizing anesthetic conditions.
Resumo:
The Human Respiratory Syncytial Virus (HRSV) fusion protein (F) was expressed in Escherichia call BL21A using the pET28a vector at 37 degrees C. The protein was purified from the soluble fraction using affinity resin. The structural quality of the recombinant fusion protein and the estimation of its secondary structure were obtained by circular dichroism. Structural models of the fusion protein presented 46% of the helices in agreement with the spectra by circular dichroism analysis. There are only few studies that succeeded in expressing the HRSV fusion protein in bacteria. This is a report on human fusion protein expression in E. call and structure analysis, representing a step forward in the development of fusion protein F inhibitors and the production of antibodies. (c) 2008 Elsevier Inc. All rights reserved.
Resumo:
Paracoccidioides brasiliensis is a thermo-dimorphic fungus that is the causative agent of paracoccidioidomyicosis (PCM), a human systemic granulomatous mycosis found in Latin America. Dimorphic transition from mycelium to yeast is required for establishing pathogenicity. Dimorphism is marked by changes in mitochondrial physiology, including modulation of respiration rate. In this work, we present the identification of three P. brasiliensis nuclear genes PbCOX9, PbCOX12, and PbCOX16 that code for structural sub-units and a putative assembly facilitator (PbCOX16) of the mitochondrial cytochrome c oxidase (COX), the terminal enzyme complex of the respiratory chain. We measured their expression pattern during the dimorphic transition from mycelium to yeast and back by real-time reverse transcription quantitative polymerase chain reaction (real-time RT-qPCR). Our results show that messages from these genes increase during the mycelium to yeast transition and decrease during the opposite conversion. This result supports active mitochondrial participation in the transition. Heterologous complementation of the corresponding Saccharomyces cerevisiae null mutant with the PbCOX9 gene was successfully obtained. (C) 2008 The British Mycological Society. Published by Elsevier Ltd. All rights reserved.
Resumo:
Human respiratory syncytial virus (HRSV) is the major pathogen leading to respiratory disease in infants and neonates worldwide. An effective vaccine has not yet been developed against this virus, despite considerable efforts in basic and clinical research. HRSV replication is independent of the nuclear RNA processing constraints, since the virus genes are adapted to the cytoplasmic transcription, a process performed by the viral RNA-dependent RNA polymerase. This study shows that meaningful nuclear RNA polymerase II dependent expression of the HRSV nucleoprotein (N) and phosphoprotein (F) proteins can only be achieved with the optimization of their genes, and that the intracellular localization of N and P proteins changes when they are expressed out of the virus replication context. Immunization tests performed in mice resulted in the induction of humoral immunity using the optimized genes. This result was not observed for the non-optimized genes. In conclusion, optimization is a valuable tool for improving expression of HRSV genes in DNA vaccines. (c) 2009 Elsevier B.V. All rights reserved.
Resumo:
Objective. To investigate the short-term effects of exposure to particulate matter from biomass burning in the Amazon on the daily demand for outpatient care due to respiratory diseases in children and the elderly. Methods. Epidemiologic study with ecologic time series design. Daily consultation records were obtained from the 14 primary health care clinics in the municipality of Alta Floresta, state of Mato Grosso, in the southern region of the Brazilian Amazon, between January 2004 and December 2005. Information on the daily levels of fine particulate matter was made available by the Brazilian National Institute for Spatial Research. To control for confounding factors ( situations in which a non-causal association between exposure and disease is observed due to a third variable), variables related to time trends, seasonality, temperature, relative humidity, rainfall, and calendar effects ( such as occurrence of holidays and weekends) were included in the model. Poisson regression with generalized additive models was used. Results. A 10 mu g/m(3) increase in the level of exposure to particulate matter was associated with increases of 2.9% and 2.6% in outpatient consultations due to respiratory diseases in children on the 6th and 7th days following exposure. Significant associations were not observed for elderly individuals. Conclusions. The results suggest that the levels of particulate matter from biomass burning in the Amazon are associated with adverse effects on the respiratory health of children.
Resumo:
Nasal mucociliary system is the first line of defense of the upper airways and may be affected acutely by exposure to particulate matter (PM) from biomass burning. Several epidemiologic studies have demonstrated a consistent association between levels of air pollution from biomass burning with increases in hospitalization for respiratory diseases and mortality. To determine the acute effects of exposure to particulate matter from biomass burning in nasal mucociliary transport by saccharin transit time (STT) test, we studied thirty-three non-smokers and twelve light smokers sugarcane cutters in two periods: pre-harvest season and 4 h after harvest at the first day after biomass burning. Lung function, exhaled carbon monoxide (CO), nasal symptoms questionnaire and mucociliary clearance (MC) were assessed. Exhaled CO was increased in smokers compared to non-smokers but did not change significantly after harvest. In contrast, SIT was similar between smokers and non-smokers and decreased significantly after harvest in both groups (p < 0.001). Exposure to PM from biomass burning did not influence nasal symptoms. Our results suggest that acute exposure to particulate matter from sugarcane burned affects mucociliary clearance in smokers and non-smokers workers in the absence of symptoms. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Asthma is a significant health issue in the pediatric population with a noteworthy growth over the years. The proposed challenge for this PhD thesis was the development of advanced methodologies to establish metabolomic patterns in urine and exhaled breath associated with asthma whose applicability was subsequently exploited to evaluate the disease state, the therapy adhesion and effect and for diagnostic purposes. The volatile composition of exhaled breath was studied combining headspace solid phase microextraction (HS-SPME) with gas chromatography coupled to mass spectrometry or with comprehensive two-dimensional gas chromatography coupled to mass spectrometry with a high resolution time of flight analyzer (GC×GC–ToFMS). These methodologies allowed the identification of several hundred compounds from different chemical families. Multivariate analysis (MVA) led to the conclusion that the metabolomic profile of asthma individuals is characterized by higher levels of compounds associated with lipid peroxidation, possibly linked to oxidative stress and inflammation (alkanes and aldehydes) known to play an important role in asthma. For future applications in clinical settings a set of nine compounds was defined and the clinical applicability was proven in monitoring the disease status and in the evaluation of the effect and / or adherence to therapy. The global volatile metabolome of urine was also explored using an HSSPME/GC×GC–ToFMS method and c.a. 200 compounds were identified. A targeted analysis was performed, with 78 compounds related with lipid peroxidation and consequently to oxidative stress levels and inflammation. The urinary non-volatile metabolomic pattern of asthma was established using proton nuclear magnetic resonance (1H NMR). This analysis allowed identifying central metabolic pathways such as oxidative stress, amino acid and lipid metabolism, gut microflora alterations, alterations in the tricarboxylic acid (TCA) cycle, histidine metabolism, lactic acidosis, and modification of free tyrosine residues after eosinophil stimulation. The obtained results allowed exploring and demonstrating the potential of analyzing the metabolomic profile of exhaled air and urine in asthma. Besides the successful development of analysis methodologies, it was possible to explore through exhaled air and urine biochemical pathways affected by asthma, observing complementarity between matrices, as well as, verify the clinical applicability.
Resumo:
Allergic asthma represents an important public health issue, most common in the paediatric population, characterized by airway inflammation that may lead to changes in volatiles secreted via the lungs. Thus, exhaled breath has potential to be a matrix with relevant metabolomic information to characterize this disease. Progress in biochemistry, health sciences and related areas depends on instrumental advances, and a high throughput and sensitive equipment such as comprehensive two-dimensional gas chromatography–time of flight mass spectrometry (GC × GC–ToFMS) was considered. GC × GC–ToFMS application in the analysis of the exhaled breath of 32 children with allergic asthma, from which 10 had also allergic rhinitis, and 27 control children allowed the identification of several hundreds of compounds belonging to different chemical families. Multivariate analysis, using Partial Least Squares-Discriminant Analysis in tandem with Monte Carlo Cross Validation was performed to assess the predictive power and to help the interpretation of recovered compounds possibly linked to oxidative stress, inflammation processes or other cellular processes that may characterize asthma. The results suggest that the model is robust, considering the high classification rate, sensitivity, and specificity. A pattern of six compounds belonging to the alkanes characterized the asthmatic population: nonane, 2,2,4,6,6-pentamethylheptane, decane, 3,6-dimethyldecane, dodecane, and tetradecane. To explore future clinical applications, and considering the future role of molecular-based methodologies, a compound set was established to rapid access of information from exhaled breath, reducing the time of data processing, and thus, becoming more expedite method for the clinical purposes.
Resumo:
This study evaluated the spirometry and respiratory static pressures in 17 young women, twice a week for three successive ovulatory menstrual cycles to determine if such variables changed across the menstrual, follicular, periovulatory, early-tomid luteal and late luteal phases. The factors phases of menstrual cycle and individual cycles had no significant effect on the spirometry variables except for peak expiratory flow (PEF) and respiratory static pressures. Significant weak positive correlations were found between the progesterone:estradiol ratio and PEF and between estrogen and tidal volume (r = 0.37), inspiratory time (r = 0.22), expiratory time (r = 0.19), maximal inspiratory pressure (r = 0.25) and maximal expiratory pressure (r = 0.20) and for progesterone and maximal inspiratory pressure (r = 0.32) during the early-to-mid luteal phase. Although most parameters of the spirometry results did not change during the menstrual cycle, the correlations observed between sexual hormones and respiratory control variables suggest a positive influence of sexual female hormones controlling the thoracic pump muscles in the luteal phase
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
This study evaluated the effect of extract of Aloe vera in the transport water of matrinxã (Brycon amazonicus) fish on stress response and leukocyte respiratory activity. Fish was transported for 4 h in water containing Aloe at levels 0; 0.02; 0.2 and 2 mg/L, and sampled before transport 2, 4, 24 and 96 h after for determination of plasma glucose and respiratory activity of leukocytes. An additional in vitro assay was conducted with another fish species, pacu (Piaractus mesopotamicus), to test the respiratory burst of leukocytes exposed to Aloe extract (0.0, phosphate-buffered saline (PBS) only) at 0.1, 0.2, 0.5 and 1 mg/L). Plasma glucose increased after 2 and 4 h of transport and returned to control levels within 24 h, but the addition of Aloe in the transport water did not affect the level of blood glucose. However, at 2 h of transport, Aloe enhanced the respiratory activity of leukocytes in a dose-dependent way. The highest value of respiratory burst activity of leukocytes was observed in the fish transported in water containing Aloe at 2 mg/L. The enhancing effect of the plant extract on the production of oxygen radicals was confirmed in vitro in leukocytes of pacu incubated in Aloe at concentrations 0.1 and 0.2 mg/L. The results suggest that Aloe vera is a modulator of the immune system in fish improving the innate immune response tested.
Resumo:
Laboratory colonies of the leaf-cutting ants Atta sexdens feed daily with leaves of Ipomoea batatas showed ant mortality and a significant decrease in the size of the fungal garden after the second week, with complete depletion of nests after 5 weeks of treatment. The mean oxygen consumption rate of these ants was higher than the control (ants collected from nests feed with leaves of Eucalyptus alba), suggesting a physiological action of the leaves of I. batatas on the ants in addition to the effect of inhibiting the growth of the fungal garden.
Resumo:
The respiratory metabolism of immature forms (eggs, larvae, prepupae and pupae) of Camponotus rufipes (Hymenoptera: Formicidae) was studied at 25 degrees C, using a Warburg respirometer. Mean respiratory rates (mu l O gamma mg(-1) live weight.hr(-1)) for eggs, first instars, second instars, third instars, fourth instars, prepupae, and pupae were respectively: 2.53, 5.07, 1.23, 0.32, 0.22, 0.19 and 0.13. Adult workers with body mass between 20 and 30 mg had a mean respiratory rate of 0.43. The high respiratory rate in first instars probably reflects, besides the size influence, the metabolic costs of differentiation that occurs in this phase. (C) 1998 Published by Elsevier B.V.