780 resultados para Epoxy nanocomposites
Resumo:
Fiber composite materials (FRP) are making an entry into the construction market in both buildings and pavements. The application to pavements comes in the form of joint reinforcement (dowels and tie bars) to date. FRP resistance to salt corrosion in dowels has made it an alternative to standard epoxy coated dowels for pavements. Iowa State University has completed a large amount of laboratory research into the determination of diameter, spacing, and durability of FRP dowels. This report documents the installation of a series of FRP elliptical-shaped dowel joints (including instrumented units) in a field situation and the beginning of a two-year study to compare laboratory results to in-service pavements. Ten joints were constructed for each of three dowel spacings of 10, 12, and 15 inches ( 254, 305, and 381 mm) with one instrumented joint in each test section. The instrumented bars will be load tested with a loaded truck and FWD testing.
Resumo:
Bacteria are generally difficult specimens to prepare for conventional resin section electron microscopy and mycobacteria, with their thick and complex cell envelope layers being especially prone to artefacts. Here we made a systematic comparison of different methods for preparing Mycobacterium smegmatis for thin section electron microscopy analysis. These methods were: (1) conventional preparation by fixatives and epoxy resins at ambient temperature. (2) Tokuyasu cryo-section of chemically fixed bacteria. (3) rapid freezing followed by freeze substitution and embedding in epoxy resin at room temperature or (4) combined with Lowicryl HM20 embedding and ultraviolet (UV) polymerization at low temperature and (5) CEMOVIS, or cryo electron microscopy of vitreous sections. The best preservation of bacteria was obtained with the cryo electron microscopy of vitreous sections method, as expected, especially with respect to the preservation of the cell envelope and lipid bodies. By comparison with cryo electron microscopy of vitreous sections both the conventional and Tokuyasu methods produced different, undesirable artefacts. The two different types of freeze-substitution protocols showed variable preservation of the cell envelope but gave acceptable preservation of the cytoplasm, but not lipid bodies, and bacterial DNA. In conclusion although cryo electron microscopy of vitreous sections must be considered the 'gold standard' among sectioning methods for electron microscopy, because it avoids solvents and stains, the use of optimally prepared freeze substitution also offers some advantages for ultrastructural analysis of bacteria.
Resumo:
Recientes investigaciones en el campo de los materiales cerámicos han dado cuenta de la importancia de la metaestabilidad para obtener estructuras con características singulares. Durante la consolidación del material las fases mestaestables se transforman en una estructura donde se produce la inhibición del crecimiento de grano. Este efecto es una consecuencia directa de la inmiscibilidad de dos fases en estado sólido. Los nanocomposites conseguidos, gracias a su pequeño tamaño de grano y a su estructura uniforme, exhiben unas interesantes propiedades como elevada dureza y tenacidad. Estas fases metaestables pueden ser producidas por diversas técnicas entre las que se encuentra la proyección térmica. En concreto en este trabajo se ha empleado la Proyección por plasma (APS). Las fases de partida inmiscibles, son fundidas y homogeneizadas durante su corta estancia en la zona caliente del plasma. Seguidamente, las partículas fundidas y aceleradas por el plasma, se someten a un enfriamiento rápido o temple (quenching) en un medio líquido, como el agua o en un substrato enfriado con nitrógeno líquido, formándose a través de este proceso las fases metaestables. El principal objetivo de este trabajo ha sido la obtención de polvos cerámicos metastables a través de la aplicación de APS y el establecimiento de un proceso de temple conducente a la formación de fases metastables así como la caracterización estructural de éstas. Como última etapa del trabajo se han estudiado los materiales nanoestructurados conseguidos tras realizar tratamientos térmicos.
Resumo:
We developed a method of sample preparation using epoxy compound, which was validated in two steps. First, we studied the homogeneity within samples by scanning tubes filled with radioactive epoxy. We found within-sample homogeneity better than 2%. Then, we studied the homogeneity between samples during a 4.5 h dispensing time. The homogeneity between samples was found to be better than 2%. This study demonstrates that we have a validated method, which assures the traceability of epoxy samples.
Resumo:
Pavement marking technology is a continually evolving subject. There are numerous types of materials used in the field today, including (but not limited to) paint, epoxy, tape, and thermoplastic. Each material has its own set of unique characteristics related to durability, retro reflectivity, installation cost, and life-cycle cost. The Iowa Highway Research Board was interested in investigating the possibility of developing an ongoing program to evaluate the various products used in pavement marking. This potential program would maintain a database of performance and cost information to assist state and local agencies in determining which materials and placement methods are most appropriate for their use. The Center for Transportation Research and Education at Iowa State University has completed Phase I of this research: to identify the current practice and experiences from around the United States to recommend a further course of action for the State of Iowa. There has been a significant amount of research completed in the last several years. Research from Michigan, Pennsylvania, South Dakota, Ohio, and Alaska all had some common findings: white markings are more retro reflective than yellow markings; paint is by-and-large the least expensive material; paint tends to degrade faster than other materials; thermoplastic and tapes had higher retro reflective characteristics. Perhaps the most significant program going on in the area of pavement markings is the National Transportation Product Evaluation Program (NTPEP). This is an ongoing research program jointly conducted by the American Association of State Highway and Transportation Officials and its member states. Field and lab tests on numerous types of pavement marking materials are being conducted at sites representing four climatological areas. These results are published periodically for use by any jurisdiction interested in pavement marking materials performance.At this time, it is recommended that the State of Iowa not embark on a test deck evaluation program. Instead, close attention should be paid to the ongoing evaluations of the NTPEP program. Materials that fare well on the NTPEP test de cks should be considered for further field studies in Iowa.
Synthesis, structure, and magnetic studies on self-assembled BiFeO3-CoFe2O4 nanocomposite thin films
Resumo:
Self-assembled (0.65)BiFeO3-(0.35)CoFe2O4 (BFO-CFO) nanostructures were deposited on SrTiO3 (001) and (111) substrates by pulsed laser deposition at various temperatures from 500 to 800°C. The crystal phases and the lattice strain for the two different substrate orientations have been determined and compared. The films grow epitaxial on both substrates but separation of the spinel and perovskite crystallites, without parasitic phases, is only obtained for growth temperatures of around 600-650°C. The BFO crystallites are out-of-plane expanded on STO(001), whereas they are almost relaxed on (111). In contrast, CFO crystallites grow out-of-plane compressed on both substrates. The asymmetric behavior of the cell parameters of CFO and BFO is discussed on the basis of the role of the epitaxial stress caused by the substrate and the spinel-perovskite interfacial stress. It is concluded that interfacial stress dominates the elastic properties of CFO crystallites and thus it may play a fundamental on the interface magnetoelectric coupling in these nanocomposites.
Resumo:
By generalizing effective-medium theory to the case of orientationally ordered but positionally disordered two component mixtures, it is shown that the anisotropic dielectric tensor of oxide superconductors can be extracted from microwave measurements on oriented crystallites of YBa2Cu3O7¿x embedded in epoxy. Surprisingly, this technique appears to be the only one which can access the resistivity perpendicular to the copper¿oxide planes in crystallites that are too small for depositing electrodes. This possibility arises in part because the real part of the dielectric constant of oxide superconductors has a large magnitude. The validity of the effective-medium approach for orientationally ordered mixtures is corroborated by simulations on two¿dimensional anisotropic random resistor networks. Analysis of the experimental data suggests that the zero-temperature limit of the finite frequency resistivity does not vanish along the c axis, a result which would simply the existence of states at the Fermi surface, even in the superconducting state
Resumo:
Pavement marking technology is a continually evolving subject. There are numerous types of materials used in the field today, including (but not limited to) paint, epoxy, tape, and thermoplastic. Each material has its own set of unique characteristics related to durability, retroreflectivity, installation cost, and life-cycle cost. The Iowa Highway Research Board was interested in investigating the possibility of developing an ongoing program to evaluate the various products used in pavement marking. This potential program would maintain a database of performance and cost information to assist state and local agencies in determining which materials and placement methods are most appropriate for their use. The Center for Transportation Research and Education at Iowa State University has completed Phase I of this research: to identify the current practice and experiences from around the United States to recommend a further course of action for the State of Iowa. There has been a significant amount of research completed in the last several years. Research from Michigan, Pennsylvania, South Dakota, Ohio, and Alaska all had some common findings: white markings are more retroreflective than yellow markings; paint is by-and-large the least expensive material; paint tends to degrade faster than other materials; thermoplastic and tapes had higher retroreflective characteristics. Perhaps the most significant program going on in the area of pavement markings is the National Transportation Product Evaluation Program (NTPEP). This is an ongoing research program jointly conducted by the American Association of State Highway and Transportation Officials and its member states. Field and lab tests on numerous types of pavement marking materials are being conducted at sites representing four climatological areas. These results are published periodically for use by any jurisdiction interested in pavement marking materials performance. At this time, it is recommended that the State of Iowa not embark on a test deck evaluation program. Instead, close attention should be paid to the ongoing evaluations of the NTPEP program. Materials that fare well on the NTPEP test de cks should be considered for further field studies in Iowa.
Resumo:
"Technical challenges exist with infrastructure that can be addressed by nondestructive evaluation (NDE) methods, such as detecting corrosion damage to reinforcing steel that anchor concrete bridge railings to bridge road decks. Moisture and chloride ions reach the anchors along the cold joint between the rails and deck, causing corrosion that weakens the anchors and ultimately the barriers. The Center for Nondestructive Evaluation at Iowa State University has experience in development of measurement techniques and new sensors using a variety of interrogating energies. This research evaluated feasibility of three technologies — x-ray radiation, ground-penetrating radar (GPR), and magnetic flux leakage (MFL) — for detection and quantification of corrosion of embedded reinforcing steel. Controlled samples containing pristine reinforcing steel with and without epoxy and reinforcing steel with 25 percent and 50 percent section reduction were embedded in concrete at 2.5 in. deep for laboratory evaluation. Two of the techniques, GPR and MFL, were used in a limited field test on the Iowa Highway 210 Bridge over Interstate 35 in Story County. The methods provide useful and complementary information. GPR provides a rapid approach to identify reinforcing steel that has anomalous responses. MFL provides similar detection responses but could be optimized to provide more quantitative correlation to actual condition. Full implementation could use either GPR or MFL methods to identify areas of concern, followed by radiography to give a visual image of the actual condition, providing the final guidance for maintenance actions." The full 103 page report and the 2 page Tech Transfer Summary are included in this link.
Resumo:
The Iowa Department of Transportation used a high molecular weight methacrylate (HMWM) resin to seal a 3,340 ft. x 64 ft. bridge deck in October 1986. The sealing was necessary to prevent deicing salt brine from entering a substantial number of transverse cracks that coincided with the epoxy coated top steel and unprotected bottom steel. HMWM resin is a three component product composed of a monomer, a cumene hydroperoxide initiator and a cobalt naphthenate promoter. The HMWM was applied with a dual spray bar system and flat-fan nozzles. Initiated monomer delivered through one spray bar was mixed in the air with promoted monomer from the other spray bar. The application rate averaged 0.956 gallons per 100 square feet for the tined textured driving lanes. Dry sand was broadcast on the surface at an average coverage of 0.58 lbs. per square yard to maintain friction. Coring showed that the HMWM resin penetrated the cracks more than two inches deep. Testing of the treated deck yielded Friction Numbers averaging 33 with a treaded tire compared to 36 prior to treatment. An inspection soon after treatment found five leaky cracks in one of the 15 spans. One inspection during a steady rain showed no leakage, but leakage from numerous cracks occurred during a subsequent rain. A second HMWM application was made on two spans. Leakage through the double application occurred during a rain. Neither the single or double application were successful in preventing leakage through the cracks.
Resumo:
Many reports have been written concerning investigations of concrete sealants. The primary concern of most investigators is the protection of bridge decks from de-icing chemicals which cause surface scaling and, when allowed to permeate to reinforcing steel, result in deep spalling and general concrete deterioration. The problem of protecting abutments and pier tops from salt solutions entails a significantly different approach than the problem of protecting bridge decks. The epoxy resins become eligible as a protective material since one need not be concerned with slipperiness or its abrasive characteristics. Protection with linseed oil at regular intervals would prove bothersome because of the inaccessibility of pier tops after the deck is placed. The primary purpose of this investigation was to evaluate various commercial products in terms of their ability to prevent concrete scaling of bridge abutments and pier tops which are subject to salt water deterioration.
Resumo:
The use of deicing salts in this part of the country is a necessity to remove ice from our bridges. The use of these salts has always been a problem since the chloride-ions penetrate the concrete and reach the steel and cause corrosion which eventually cause deterioration of both the steel and concrete. One method used to try to prevent this from happening was to apply a waterproof membrane to the concrete after it was placed. This method did help, but was not cost effective as the longevity of the membrane system was of relatively short duration. For this reason, this research project was initiated. After the original deck was placed a second layer of concrete about 1 1/2" thick was placed on top. Biennial evaluation of the decks included testing for delaminations and steel corrosion. Cores were also obtained for a chloride analysis. Testing and observations showed the two-layer bridge deck to be effective in preventing corrosion. Since the time this project was initiated, epoxy steel has been introduced and is a cost effective way to protect the steel from corrosion.
Resumo:
Concrete bridge decks subjected to corrosive environment because of the application of de-icing chemical could deteriorate at a rapid rate. In an effort to minimize corrosion of the reinforcement and the corresponding delaminations and spalls, the Iowa Department of Transportation started using epoxy-coated rebars (ECR) in the top mat of reinforcing around 1976 and in both mats 10 years later. The overall objective of this research was to determine the impact of deck cracking on durability and estimate the remaining functional service life of a bridge deck. This was accomplished by conducting a literature review, visually inspecting several bridge decks, collecting and sampling test cores from cracked and uncracked areas of bridge decks, determining the extent to which epoxy-coated rebars deteriorate at the site of cracks, and evaluating the impact of cracking on service life.
Resumo:
The corrosion of reinforcing steel within concrete has always been a problem in construction of bridge decks. With low slump concrete and epoxy rebar, progress has been made in controlling the corrosion. There is concern, however, that the chloride also attacks the substructures, specifically the pier columns. They are subject to chloride attack by chemical deicers in the drainage from the bridge deck. Piers supporting grade separation bridges are also subject to chlorides contained in the direct splash from the lower level traffic. In this project, a field evaluation was conducted to evaluate the effectiveness of commercially available products in preventing chloride intrusion.