978 resultados para Enzyme Inhibitors -- pharmacology
Resumo:
The low GFR of newborns is maintained by various factors including the renin-angiotensin system. We previously established the importance of angiotensin II in the newborn kidney, using the angiotensin-converting enzyme inhibitor perindoprilat. The present study was designed to complement these observations by evaluating the role of angiotensin-type 1 (AT(1)) receptors, using losartan, a specific AT(1)-receptor blocker. Increasing doses of losartan were infused into anesthetized, ventilated, newborn rabbits. Renal function and hemodynamic variables were assessed using inulin and para-aminohippuric acid clearances as markers of GFR and renal plasma flow, respectively. Losartan 0.1 mg/kg slightly decreased mean blood pressure (-11%) and increased diuresis (+22%). These changes can be explained by inhibition of the AT(1)-mediated vasoconstrictive and antidiuretic effects of angiotensin, and activation of vasodilating and diuretic AT(2) receptors widely expressed in the neonatal period. GFR and renal blood flow were not modified. Losartan 0.3 mg/kg decreased mean blood pressure significantly (-15%), probably by inhibiting systemic AT(1) receptors. GFR significantly decreased (-25%), whereas renal blood flow remained stable. The decrease in filtration fraction (-21%) indicates predominant efferent vasodilation. At 3 mg/kg, the systemic hypotensive effect of losartan was marked (mean blood pressure, -28%), with decreased GFR and renal blood flow (-57% and -51%, respectively), a stable filtration fraction, and an increase in renal vascular resistance by 124%. The renal response to this dose can be considered as reflex vasoconstriction of afferent and efferent arterioles, rather than specific receptor antagonism. We conclude that under physiologic conditions, the renin-angiotensin is critically involved in the maintenance of GFR in the immature kidney.
Resumo:
Angio-oedema (AE) is a known adverse effect of angiotensin converting enzyme inhibitor (ACE-I) therapy. Over the past several decades, evidence of failure to diagnose this important and potentially fatal reaction is commonly found in the literature. Because this reaction is often seen first in the primary care setting, a review was undertaken to analyse and document the keys to both diagnostic criteria as well as to investigate potential risk factors for ACE-I AE occurrence. A general review of published literature was conducted through Medline, EMBASE, and the Cochrane Database, targeting ACE-I-related AE pathomechanism, diagnosis, epidemiology, risk factors, and clinical decision making and treatment. The incidence and severity of AE appears to be on the rise and there is evidence of considerable delay in diagnosis contributing to significant morbidity and mortality for patients. The mechanism of AE due to ACE-I drugs is not fully understood, but some genomic and metabolomic information has been correlated. Additional epidemiologic data and clinical treatment outcome predictors have been evaluated, creating a basis for future work on the development of clinical prediction tools to aid in risk identification and diagnostic differentiation. Accurate recognition of AE by the primary care provider is essential to limit the rising morbidity associated with ACE-I treatment-related AE. Research findings on the phenotypic indicators relevant to this group of patients as well as basic research into the pathomechanism of AE are available, and should be used in the construction of better risk analysis and clinical diagnostic tools for ACE-I AE.
Resumo:
Today two largely new approaches are available for the treatment of clinical hypertension. First, captopril, an orally active angiotensin converting enzyme inhibitor, makes possible chronic blockade of the renin-angiotensin system. This compound, given alone or in combination with a diuretic, normalizes the blood pressure of most hypertensive patients. Unfortunately, because captopril may induce serious adverse effects the use of this inhibitor must be restricted to patients with high blood pressure refractory to conventional antihypertensive drugs. Second, compounds such as verapamil and nifedipine are capable of producing a marked vasodilating effect by inhibiting the entry of calcium into the vascular smooth muscle cells. However, the role of calcium channel blockers in the treatment of hypertensive disease awaits more precise definition.
Resumo:
Introduction: Proton pump inhibitors (PPI) are one of the most prescribed medications in the world with proven efficacy. However, several studies showed that their use often doesn't respect indications, leading to over-consumption, thus exposing patients to drug interactions and adverse events (for example pneumonias). Interruption of PPIs can induce a rebound phenomenon. This generates costs for health systems.Methods: This is a prospective interventional study performed in two hospitals: La Chaux-de-Fonds (CDF, cases) and Neucha^tel (NE, control) during two six-month periods, comparing use of PPIs before and after intervention. We elaborated recommendations (PPI doses and treatment duration) based on recent medical literature that we summarized on A6 cards and gave out to all prescribing doctors in the hospital of CDF and held a 30-minute information session for the departments of surgery, medicine and anesthesiology in March 2010. Doctors were asked to apply our recommendations as often as possible, leaving space for their own assessment. No information was given to the doctors of the control hospital. The number of PPI tablets that the pharmacy sent to each careunit in both hospitals was counted and adjusted to the number of patientdays from April to September 2009 (before intervention) and April to September 2010 (after intervention). The number of other antacids that were used in both hospitals was counted during the same periods. General practitioners (GP) in the region around CDF received an explanation letter to avoid re-introduction, after discharge from the hospital, of PPI treatment stopped during the stay. The number of gastro-duodenal ulcers and upper digestive hemorrhages was counted from April to December 2009 and the same period in 2010 in both hospitals.Results: In 2010, in the hospital of CDF, the use of PPIs per 100 patient-days decreased by 36% in the surgical and medical departments compared to 2009. In the control hospital the use of PPIs per 100 patient-days increased by 10% in the surgical department and decreased by 5% in the medical department during the same periods. The decrease from 2009 to 2010 of PPI utilization in CDF comparing to NE is statistically significant: p<0.0001. Use of other antacids didn't change, ulcers or digestive hemorrhages decreased slightly from 2009 to 2010 in both hospitals. Conclusions: The study showed that with a very low-cost intervention, it is possible to decrease considerably the use of PPIs in a hospital, without taking any risk for gastro-intestinal complications.
Resumo:
Background: Huntington's disease (HD) is an inherited neurodegenerative disorder triggered by an expanded polyglutamine tract in huntingtin that is thought to confer a new conformational property on this large protein. The propensity of small amino-terminal fragments with mutant, but not wild-type, glutamine tracts to self-aggregate is consistent with an altered conformation but such fragments occur relatively late in the disease process in human patients and mouse models expressing full-length mutant protein. This suggests that the altered conformational property may act within the full-length mutant huntingtin to initially trigger pathogenesis. Indeed, genotypephenotype studies in HD have defined genetic criteria for the disease initiating mechanism, and these are all fulfilled by phenotypes associated with expression of full-length mutant huntingtin, but not amino-terminal fragment, in mouse models. As the in vitro aggregation of amino-terminal mutant huntingtin fragment offers a ready assay to identify small compounds that interfere with the conformation of the polyglutamine tract, we have identified a number of aggregation inhibitors, and tested whether these are also capable of reversing a phenotype caused by endogenous expressionof mutant huntingtin in a striatal cell line from the HdhQ111/Q111 knock-in mouse. Results: We screened the NINDS Custom Collection of 1,040 FDA approved drugs and bioactive compounds for their ability to prevent in vitro aggregation of Q58-htn 1¿171 amino terminal fragment. Ten compounds were identified that inhibited aggregation with IC50 < 15 ¿M, including gossypol, gambogic acid, juglone, celastrol, sanguinarine and anthralin. Of these, both juglone and celastrol were effective in reversing the abnormal cellular localization of full-length mutant huntingtin observed in mutant HdhQ111/Q111 striatal cells. Conclusions: At least some compounds identified as aggregation inhibitors also prevent a neuronal cellular phenotype caused by full-length mutant huntingtin, suggesting that in vitro fragment aggregation can act as a proxy for monitoring the disease-producing conformational property in HD. Thus, identification and testing of compounds that alter in vitro aggregation is a viable approach for defining potential therapeutic compounds that may act on the deleterious conformational property of full-length mutant huntingtin.
Resumo:
Hormone-dependent diseases, e.g. cancers, rank high in mortality in the modern world, and thus, there is an urgent need for new drugs to treat these diseases. Although the diseases are clearly hormone-dependent, changes in circulating hormone concentrations do not explain all the pathological processes observed in the diseased tissues. A more inclusive explanation is provided by intracrinology – a regulation of hormone concentrations at the target tissue level. This is mediated by the expression of a pattern of steroid-activating and -inactivating enzymes in steroid target tissues, thus enabling a concentration gradient between the blood circulation and the tissue. Hydroxysteroid (17beta) dehydrogenases (HSD17Bs) form a family of enzymes that catalyze the conversion between low active 17-ketosteroids and highly active 17beta-hydroxysteroids. HSD17B1 converts low active estrogen (E1) to highly active estradiol (E2) with high catalytic efficiency, and altered HSD17B1 expression has been associated with several hormone-dependent diseases, including breast cancer, endometriosis, endometrial hyperplasia and cancer, and ovarian epithelial cancer. Because of its putative role in E2 biosynthesis in ovaries and peripheral target tissues, HSD17B1 is considered to be a promising drug target for estrogen-dependent diseases. A few studies have indicated that the enzyme also has androgenic activity, but they have been ignored. In the present study, transgenic mice overexpressing human HSD17B1 (HSD17B1TG mice) were used to study the effects of the enzyme in vivo. Firstly, the substrate specificity of human HSD17B1 was determined in vivo. The results indicated that human HSD17B1 has significant androgenic activity in female mice in vivo, which resulted in increased fetal testosterone concentration and female disorder of sexual development appearing as masculinized phenotype (increased anogenital distance, lack of nipples, lack of vaginal opening, combination of vagina with urethra, enlarged Wolffian duct remnants in the mesovarium and enlarged female prostate). Fetal androgen exposure has been linked to polycystic ovary syndrome (PCOS) and metabolic syndrome during adulthood in experimental animals and humans, but the genes involved in PCOS are largely unknown. A putative mechanism to accumulate androgens during fetal life by HSD17B1 overexpression was shown in the present study. Furthermore, as a result of prenatal androgen exposure locally in the ovaries, HSD17B1TG females developed ovarian benign serous cystadenomas in adulthood. These benign lesions are precursors of low-grade ovarian serous tumors. Ovarian cancer ranks fifth in mortality of all female cancers in Finland, and most of the ovarian cancers arise from the surface epithelium. The formation of the lesions was prevented by prenatal antiandrogen treatment and by transplanting wild type (WT) ovaries prepubertally into HSD17B1TG females. The results obtained in our non-clinical TG mouse model, together with a literature analysis, suggest that HSD17B1 has a role in ovarian epithelial carcinogenesis, and especially in the development of serous tumors. The role of androgens in ovarian carcinogenesis is considered controversial, but the present study provides further evidence for the androgen hypothesis. Moreover, it directly links HSD17B1-induced prenatal androgen exposure to ovarian epithelial carcinogenesis in mice. As expected, significant estrogenic activity was also detected for human HSD17B1. HSD17B1TG mice had enhanced peripheral conversion of E1 to E2 in a variety of target tissues, including the uterus. Furthermore, this activity was significantly decreased by treatments with specific HSD17B1 inhibitors. As a result, several estrogen-dependent disorders were found in HSD17B1TG females. Here we report that HSD17B1TG mice invariably developed endometrial hyperplasia and failed to ovulate in adulthood. As in humans, endometrial hyperplasia in HSD17B1TG females was reversible upon ovulation induction, triggering a rise in circulating progesterone levels, and in response to exogenous progestins. Remarkably, treatment with a HSD17B1 inhibitor failed to restore ovulation, yet completely reversed the hyperplastic morphology of epithelial cells in the glandular compartment. We also demonstrate that HSD17B1 is expressed in normal human endometrium, hyperplasia, and cancer. Collectively, our non-clinical data and literature analysis suggest that HSD17B1 inhibition could be one of several possible approaches to decrease endometrial estrogen production in endometrial hyperplasia and cancer. HSD17B1 expression has been found in bones of humans and rats. The non-clinical data in the present study suggest that human HSD17B1 is likely to have an important role in the regulation of bone formation, strength and length during reproductive years in female mice. Bone density in HSD17B1TG females was highly increased in femurs, but in lesser amounts also in tibias. Especially the tibia growth plate, but not other regions of bone, was susceptible to respond to HSD17B1 inhibition by increasing bone length, whereas the inhibitors did not affect bone density. Therefore, HSD17B1 inhibitors could be safer than aromatase inhibitors in regard to bone in the treatment of breast cancer and endometriosis. Furthermore, diseases related to improper growth, are a promising new indication for HSD17B1 inhibitors.
Resumo:
Notwithstanding the functional role that the aggregates of some amyloidogenic proteins can play in different organisms, protein aggregation plays a pivotal role in the pathogenesis of a large number of human diseases. One of such diseases is Alzheimer"s disease (AD), where the overproduction and aggregation of the β-amyloid peptide (Aβ) are regarded as early critical factors. Another protein that seems to occupy a prominent position within the complex pathological network of AD is the enzyme acetylcholinesterase (AChE), with classical and non-classical activities involved at the late (cholinergic deficit) and early (Aβ aggregation) phases of the disease. Dual inhibitors of Aβ aggregation and AChE are thus emerging as promising multi-target agents with potential to efficiently modify the natural course of AD. In the initial phases of the drug discovery process of such compounds, in vitro evaluation of the inhibition of Aβ aggregation is rather troublesome, as it is very sensitive to experimental assay conditions, and requires expensive synthetic Aβ peptides, which makes cost-prohibitive the screening of large compound libraries. Herein, we review recently developed multi-target anti-Alzheimer compounds that exhibit both Aβ aggregation and AChE inhibitory activities, and, in some cases also additional valuable activities such as BACE-1 inhibition or antioxidant properties. We also discuss the development of simplified in vivo methods for the rapid, simple, reliable, unexpensive, and high-throughput amenable screening of Aβ aggregation inhibitors that rely on the overexpression of Aβ42 alone or fused with reporter proteins in Escherichia coli.
Resumo:
Drug discovery is a continuous process where researchers are constantly trying to find new and better drugs for the treatment of various conditions. Alzheimer’s disease, a neurodegenerative disease mostly affecting the elderly, has a complex etiology with several possible drug targets. Some of these targets have been known for years while other new targets and theories have emerged more recently. Cholinesterase inhibitors are the major class of drugs currently used for the symptomatic treatment of Alzheimer’s disease. In the Alzheimer’s disease brain there is a deficit of acetylcholine and an impairment in signal transmission. Acetylcholinesterase has therefore been the main target as this is the main enzyme hydrolysing acetylcholine and ending neurotransmission. It is believed that by inhibiting acetylcholinesterase the cholinergic signalling can be enhanced and the cognitive symptoms that arise in Alzheimer’s disease can be improved. Butyrylcholinesterase, the second enzyme of the cholinesterase family, has more recently attracted interest among researchers. Its function is still not fully known, but it is believed to play a role in several diseases, one of them being Alzheimer’s disease. In this contribution the aim has primarily been to identify butyrylcholinesterase inhibitors to be used as drug molecules or molecular probes in the future. Both synthetic and natural compounds in diverse and targeted screening libraries have been used for this purpose. The active compounds have been further characterized regarding their potencies, cytotoxicity, and furthermore, in two of the publications, the inhibitors ability to also inhibit Aβ aggregation in an attempt to discover bifunctional compounds. Further, in silico methods were used to evaluate the binding position of the active compounds with the enzyme targets. Mostly to differentiate between the selectivity towards acetylcholinesterase and butyrylcholinesterase, but also to assess the structural features required for enzyme inhibition. We also evaluated the compounds, active and non-active, in chemical space using the web-based tool ChemGPS-NP to try and determine the relevant chemical space occupied by cholinesterase inhibitors. In this study, we have succeeded in finding potent butyrylcholinesterase inhibitors with a diverse set of structures, nine chemical classes in total. In addition, some of the compounds are bifunctional as they also inhibit Aβ aggregation. The data gathered from all publications regarding the chemical space occupied by butyrylcholinesterase inhibitors we believe will give an insight into the chemically active space occupied by this type of inhibitors and will hopefully facilitate future screening and result in an even deeper knowledge of butyrylcholinesterase inhibitors.
Resumo:
Eleusine indica (goosegrass) is a diploid grass weed which has developed resistance to ACCase inhibitors during the last ten years due to the intensive and frequent use of sethoxydim to control grass weeds in soybean crops in Brazil. Plant dose-response assays confirmed the resistant behaviour of one biotype obtaining high resistance factor values: 143 (fenoxaprop), 126 (haloxyfop), 84 (sethoxydim) to 58 (fluazifop). ACCase in vitro assays indicated a target site resistance as the main cause of reduced susceptibility to ACCase inhibitors. PCR-generated fragments of the ACCase CT domain of the resistant and sensitive reference biotype were sequenced and compared. A point mutation was detected within the triplet of aspartate at the amino acid position 2078 (referred to EMBL accession no. AJ310767) and resulted in the triplet of glycine. These results constitute the first report on a target site mutation for a Brazilian herbicide resistant grass weed.
Resumo:
Herbicides that inhibit the enzyme protoporphyrinogen oxidase (PROTOX) are usually effective to control dicotyledonous weeds and their agronomic efficacy is affected by environmental and physiological factors. The objective of this review is to summarize the knowledge of those factors available in the scientific literature in the last decade. Environmental factors that influence PROTOX inhibitors include temperature, irradiance and relative humidity. The most relevant physiological factors are the activity of enzymes that can detoxify herbicides and also of enzymes that mitigate the effects of oxidative stress in plants. The study also suggests some possible management strategies that could optimize the activity of PROTOX-inhibiting herbicides.
Resumo:
Human plasma kallikrein, a serine proteinase, plays a key role in intrinsic blood clotting, in the kallikrein-kinin system, and in fibrinolysis. The proteolytic enzymes involved in these processes are usually controlled by specific inhibitors and may be influenced by several factors including glycosaminoglycans, as recently demonstrated by our group. The aim of the present study was to investigate the effect of glycosaminoglycans (30 to 250 µg/ml) on kallikrein activity on plasminogen and factor XII and on the inhibition of kallikrein by the plasma proteins C1-inhibitor and antithrombin. Almost all available glycosaminoglycans (heparin, heparan sulfate, bovine and tuna dermatan sulfate, chondroitin 4- and 6-sulfates) reduced (1.2 to 3.0 times) the catalytic efficiency of kallikrein (in a nanomolar range) on the hydrolysis of plasminogen (0.3 to 1.8 µM) and increased (1.9 to 7.7 times) the enzyme efficiency in factor XII (0.1 to 10 µM) activation. On the other hand, heparin, heparan sulfate, and bovine and tuna dermatan sulfate improved (1.2 to 3.4 times) kallikrein inhibition by antithrombin (1.4 µM), while chondroitin 4- and 6-sulfates reduced it (1.3 times). Heparin and heparan sulfate increased (1.4 times) the enzyme inhibition by the C1-inhibitor (150 nM).
Resumo:
The frequent use of nonsteroidal anti-inflammatory drugs (NSAID) in combination with gentamicin poses the additional risk of nephrotoxic renal failure. Cyclooxygenase-1 (COX-1) is the main enzyme responsible for the synthesis of renal vasodilator prostaglandins, while COX-2 participates predominantly in the inflammatory process. Both are inhibited by non-selective NSAID such as indomethacin. Selective COX-2 inhibitors such as rofecoxib seem to have fewer renal side effects than non-selective inhibitors. The objective of the present study was to determine whether the combined use of rofecoxib and gentamicin can prevent the increased renal injury caused by gentamicin and indomethacin. Male Wistar rats (250-300 g) were treated with gentamicin (100 mg/kg body weight, ip, N = 7), indomethacin (5 mg/kg, orally, N = 7), rofecoxib (1.4 mg/kg, orally, N = 7), gentamicin + rofecoxib (100 and 1.4 mg/kg, respectively) or gentamicin + indomethacin (100 and 5 mg/kg, respectively, N = 8) for 5 days. Creatinine clearance and alpha-glutathione-S-transferase concentrations were used as markers of renal injury. Animals were anesthetized with ether and sacrificed for blood collection. The use of gentamicin plus indomethacin led to worsened renal function (0.199 ± 0.019 ml/min), as opposed to the absence of a nephrotoxic effect of rofecoxib when gentamicin plus rofexicob was used (0.242 ± 0.011 ml/min). These results indicate that COX-2-selective inhibitors can be used as an alternative treatment to conventional NSAID, especially in situations in which risk factors for nephrotoxicity are present.
Resumo:
A continuous assay using internally quenched fluorescent peptides with the general sequence Abz-peptidyl-(Dnp)P-OH (Abz = ortho-aminobenzoic acid; Dnp = 2,4-dinitrophenyl) was optimized for the measurement of angiotensin I-converting enzyme (ACE) in human plasma and rat tissues. Abz-FRK(Dnp)P-OH, which was cleaved at the Arg-Lys bond by ACE, was used for the enzyme evaluation in human plasma. Enzymatic activity was monitored by continuous recording of the fluorescence (lambdaex = 320 nm and lambdaem = 420 nm) at 37ºC, in 0.1 M Tris-HCl buffer, pH 7.0, with 50 mM NaCl and 10 µM ZnCl2. The assays can be performed directly in the cuvette of the fluorimeter and the hydrolysis followed for 5 to 10 min. ACE measurements in the plasma of 80 healthy patients with Hip-His-Leu and with Abz-FRK(Dnp)P-OH correlated closely (r = 0.90, P < 0.001). The specificity of the assay was demonstrated by the complete inhibition of hydrolysis by 0.5 µM lisinopril or captopril. Abz-FRK(Dnp)P-OH cleavage by ACE was monitored in rat lung, kidney, heart, and liver homogenates in the presence of a cocktail of inhibitors containing trans-epoxy-succinyl-L-leucylamido-(4-guanido)-butene, pepstatin, phenyl-methylsulfonyl fluoride, N-tosyl-L-phenylalanyl-chloromethyl ketone, and N-tosyl-lysyl-chloromethyl ketone to prevent undesirable hydrolysis. ACE activity in lung, heart and kidney homogenates, but not in liver homogenates, was completely abolished by 0.5 µM lisinopril or captopril. The advantages of the method are the procedural simplicity and the high sensitivity providing a rapid assay for ACE determinations.
Resumo:
The present study describes the main characteristics of the proteolytic activities of the velvetbean caterpillar, Anticarsia gemmatalis Hübner, and their sensitivity to proteinase inhibitors and activators. Midguts of last instar larvae reared on an artificial diet were homogenized in 0.15 M NaCl and centrifuged at 14,000 g for 10 min at 4ºC and the supernatants were used in enzymatic assays at 30ºC, pH 10.0. Basal total proteolytic activity (azocasein hydrolysis) was 1.14 ± 0.15 absorbance variation min-1 mg protein-1, at 420 nm; basal trypsin-like activity (N-benzoyl-L-arginine-p-nitroanilide, BApNA, hydrolysis) was 0.217 ± 0.02 mmol p-nitroaniline min-1 mg protein-1. The maximum proteolytic activities were observed at pH 10.5 using azocasein and at pH 10.0 using BApNA, this pH being identical to the midgut pH of 10.0. The maximum trypsin-like activity occurred at 50ºC, a temperature that reduces enzyme stability to 80 and 60% of the original, when pre-incubated for 5 and 30 min, respectively. Phenylmethylsulfonyl fluoride inhibited the proteolytic activities with an IC50 of 0.39 mM for azocasein hydrolysis and of 1.35 mM for BApNA hydrolysis. Benzamidine inhibited the hydrolysis with an IC50 of 0.69 and 0.076 mM for azocasein and BApNA, respectively. The absence of cysteine-proteinases is indicated by the fact that 2-mercaptoethanol and L-cysteine did not increase the rate of azocasein hydrolysis. These results demonstrate the presence of serine-proteinases and the predominance of trypsin-like activity in the midgut of Lepidoptera insects, now also detected in A. gemmatalis, and suggest this enzyme as a major target for pest control based on disruption of protein metabolism using proteinase inhibitors.