966 resultados para Environmental monitoring Remote sensing


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Remote hyperspectral sensors collect large amounts of data per flight usually with low spatial resolution. It is known that the bandwidth connection between the satellite/airborne platform and the ground station is reduced, thus a compression onboard method is desirable to reduce the amount of data to be transmitted. This paper presents a parallel implementation of an compressive sensing method, called parallel hyperspectral coded aperture (P-HYCA), for graphics processing units (GPU) using the compute unified device architecture (CUDA). This method takes into account two main properties of hyperspectral dataset, namely the high correlation existing among the spectral bands and the generally low number of endmembers needed to explain the data, which largely reduces the number of measurements necessary to correctly reconstruct the original data. Experimental results conducted using synthetic and real hyperspectral datasets on two different GPU architectures by NVIDIA: GeForce GTX 590 and GeForce GTX TITAN, reveal that the use of GPUs can provide real-time compressive sensing performance. The achieved speedup is up to 20 times when compared with the processing time of HYCA running on one core of the Intel i7-2600 CPU (3.4GHz), with 16 Gbyte memory.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dissertation submitted in partial fulfilment of the requirements for the Degree of Master of Science in Geospatial Technologies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ammonia is an important gas in many power plants and industrial processes so its detection is of extreme importance in environmental monitoring and process control due to its high toxicity. Ammonia’s threshold limit is 25 ppm and the exposure time limit is 8 h, however exposure to 35 ppm is only secure for 10 min. In this work a brief introduction to ammonia aspects are presented, like its physical and chemical properties, the dangers in its manipulation, its ways of production and its sources. The application areas in which ammonia gas detection is important and needed are also referred: environmental gas analysis (e.g. intense farming), automotive-, chemical- and medical industries. In order to monitor ammonia gas in these different areas there are some requirements that must be attended. These requirements determine the choice of sensor and, therefore, several types of sensors with different characteristics were developed, like metal oxides, surface acoustic wave-, catalytic-, and optical sensors, indirect gas analyzers, and conducting polymers. All the sensors types are described, but more attention will be given to polyaniline (PANI), particularly to its characteristics, syntheses, chemical doping processes, deposition methods, transduction modes, and its adhesion to inorganic materials. Besides this, short descriptions of PANI nanostructures, the use of electrospinning in the formation of nanofibers/microfibers, and graphene and its characteristics are included. The created sensor is an instrument that tries to achieve a goal of the medical community in the control of the breath’s ammonia levels being an easy and non-invasive method for diagnostic of kidney malfunction and/or gastric ulcers. For that the device should be capable to detect different levels of ammonia gas concentrations. So, in the present work an ammonia gas sensor was developed using a conductive polymer composite which was immobilized on a carbon transducer surface. The experiments were targeted to ammonia measurements at ppb level. Ammonia gas measurements were carried out in the concentration range from 1 ppb to 500 ppb. A commercial substrate was used; screen-printed carbon electrodes. After adequate surface pre-treatment of the substrate, its electrodes were covered by a nanofibrous polymeric composite. The conducting polyaniline doped with sulfuric acid (H2SO4) was blended with reduced graphene oxide (RGO) obtained by wet chemical synthesis. This composite formed the basis for the formation of nanofibers by electrospinning. Nanofibers will increase the sensitivity of the sensing material. The electrospun PANI-RGO fibers were placed on the substrate and then dried at ambient temperature. Amperometric measurements were performed at different ammonia gas concentrations (1 to 500 ppb). The I-V characteristics were registered and some interfering gases were studied (NO2, ethanol, and acetone). The gas samples were prepared in a custom setup and were diluted with dry nitrogen gas. Electrospun nanofibers of PANI-RGO composite demonstrated an enhancement in NH3 gas detection when comparing with only electrospun PANI nanofibers. Was visible higher range of resistance at concentrations from 1 to 500 ppb. It was also observed that the sensor had stable, reproducible and recoverable properties. Moreover, it had better response and recovery times. The new sensing material of the developed sensor demonstrated to be a good candidate for ammonia gas determination.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dissertation submitted in partial fulfillment of the requirements for the Degree of Master of Science in Geospatial Technologies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dissertation submitted in partial fulfillment of the requirements for the Degree of Master of Science in Geospatial Technologies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dissertation submitted in partial fulfillment of the requirements for the Degree of Master of Science in Geospatial Technologies

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The global dynamics of alliances are strongly determined by the level of cooperation among states. This cooperation can be embodied in various aspects, but the level of defense and security cooperation becomes usually more doctrinal and lasting. By the nature of sovereignty that instills in the bilateral relationship, cooperation at defense and security level can leverages other forms of cooperation. The circumstances and relational balance between Brazil and Portugal seem to evolve towards distancing opportunities, despite they are culturally and institutionally untainted. The economic dynamics, the strategic projection in global sustainability terms, the scale and ambition of Brazilian regional leadership, contrasts with the actual context of Portugal, distancing himself both on the stage where they operate. On the other hand, the historical and cultural roots, the language, the affinity of the peoples of CPLP and some opportunities for economic niches, trend to attract both countries. The condition of Portugal in NATO and Europe, coupled with the ability to export technical and human resources to value-added for Brazil, seems also to become approaching factors. On the balance of these dynamics, there is a set of exogenous factors (economic, external global relations matrix, regional stability, among others), which are not always controlled by any of both countries. These factors call for strong capacity for foresight analysis and decision making, with the inherent risk. There is cooperation vectors that are not apparently penalized by geographic distance, or by the difference of realities. Among these vectors we shall highlight synergies in technological niches, highly tradable goods and, mostly, using the domain of dual technologies. The thirteen niches herein identified are: Monitoring, Navigation, Command and Control, Electronics, Optoelectronics, Communication and remote sensing, Information Technologies, Flight Simulation, Specialized Training, Fiber Optic Sensors, Materials Engineering, Nanotechnology and Communications. Cumulating with identified opportunities in traditional relational framework, both countries are growing (in geography and economic terms) into the Atlantic, making it a central element in the bilateral approach. By being at the same time a growing stage of disputes and which stability tends to be threatened, it will be done an analysis of these synergistic vectors, superimposed on the impact on Atlantic securitization process.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Grasslands in semi-arid regions, like Mongolian steppes, are facing desertification and degradation processes, due to climate change. Mongolia’s main economic activity consists on an extensive livestock production and, therefore, it is a concerning matter for the decision makers. Remote sensing and Geographic Information Systems provide the tools for advanced ecosystem management and have been widely used for monitoring and management of pasture resources. This study investigates which is the higher thematic detail that is possible to achieve through remote sensing, to map the steppe vegetation, using medium resolution earth observation imagery in three districts (soums) of Mongolia: Dzag, Buutsagaan and Khureemaral. After considering different thematic levels of detail for classifying the steppe vegetation, the existent pasture types within the steppe were chosen to be mapped. In order to investigate which combination of data sets yields the best results and which classification algorithm is more suitable for incorporating these data sets, a comparison between different classification methods were tested for the study area. Sixteen classifications were performed using different combinations of estimators, Landsat-8 (spectral bands and Landsat-8 NDVI-derived) and geophysical data (elevation, mean annual precipitation and mean annual temperature) using two classification algorithms, maximum likelihood and decision tree. Results showed that the best performing model was the one that incorporated Landsat-8 bands with mean annual precipitation and mean annual temperature (Model 13), using the decision tree. For maximum likelihood, the model that incorporated Landsat-8 bands with mean annual precipitation (Model 5) and the one that incorporated Landsat-8 bands with mean annual precipitation and mean annual temperature (Model 13), achieved the higher accuracies for this algorithm. The decision tree models consistently outperformed the maximum likelihood ones.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Programa Doutoral em Matemática e Aplicações.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Radiometric changes observed in multi-temporal optical satellite images have an important role in efforts to characterize selective-logging areas. The aim of this study was to analyze the multi-temporal behavior of spectral-mixture responses in satellite images in simulated selective-logging areas in the Amazon forest, considering red/near-infrared spectral relationships. Forest edges were used to infer the selective-logging infrastructure using differently oriented edges in the transition between forest and deforested areas in satellite images. TM/Landsat-5 images acquired at three dates with different solar-illumination geometries were used in this analysis. The method assumed that the radiometric responses between forest with selective-logging effects and forest edges in contact with recent clear-cuts are related. The spatial frequency attributes of red/near infrared bands for edge areas were analyzed. Analysis of dispersion diagrams showed two groups of pixels that represent selective-logging areas. The attributes for size and radiometric distance representing these two groups were related to solar-elevation angle. The results suggest that detection of timber exploitation areas is limited because of the complexity of the selective-logging radiometric response. Thus, the accuracy of detecting selective logging can be influenced by the solar-elevation angle at the time of image acquisition. We conclude that images with lower solar-elevation angles are less reliable for delineation of selecting logging.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Las actividades agropecuarias ejercen diferentes presiones sobre los recursos naturales. Esto ha llevado, en algunas áreas, a un deterioro del suelo que provoca un impacto sobre la sustentabilidad en los sistemas agropecuarios. Para evaluar la degradación del suelo se han propuesto listas de indicadores, sin embargo, se carece de una herramienta metodológica robusta, adaptada a las condiciones edafoclimáticas regionales. Además, existe una demanda de productores e instituciones interesados en orientar acciones para preservar el suelo. El objetivo de este proyecto es evaluar la degradación física, química y biológica de los suelos en agroecosistemas del centro-sur de Córdoba. Por ello se propone desarrollar una herramienta metodológica que consiste en un set de indicadores físicos, químicos y biológicos, con valores umbrales, integrados en índices de degradación, que asistan a los agentes tomadores de decisiones y productores, en la toma de decisiones respecto de la degradación del suelo. El área de trabajo será una región agrícola del centro-sur de Córdoba con más de 100 años de agricultura. La metodología comienza con la caracterización del uso del territorio y sistemas de manejo, su clasificación y la obtención de mapas base de usos y manejos, mediante sensores remotos y encuestas. Se seleccionarán sitios de muestreo mediante una metodología semi-dirigida usando un SIG, asegurando un mínimo de un punto de muestreo por unidad de mapeo. Se elegirán sitios de referencia lo más cercano a una condición natural. Los indicadores a evaluar surgen de listas propuestas en trabajos previos del grupo, seleccionados en base a criterios internacionales y a adecuados a suelos de la región. Se usarán indicadores núcleo y complementarios. Para la obtención de umbrales, se usarán por un lado valores provenientes de la bibliografía y por otro, umbrales generados a partir de la distribución estadística del indicador en suelos de referencia. Para estandarizar cada indicador se definirá una función de transformación. Luego serán ponderarán mediante análisis estadísticos mulivariados e integrados en índices de degradación física, química y biológica, y un índice general de degradación. El abordaje concluirá con el desarrollo de dos instrumentos para la toma de decisiones: uno a escala regional, que consistirá en mapas de degradación en base a unidades cartográficas ambientales, de uso del territorio y de sistemas de manejo y otro a escala predial que informará sobre la degradación del suelo de un lote en particular, en comparación con suelos de referencia. Los actores interesados contarán con herramientas robustas para la toma de decisiones respecto de la degradación del suelo tanto a escala regional como local. Agricultural activities exert different pressures on natural resources. In some areas this has led to soil degradation and has an impact on agricultural sustainability. To assess soil degradation a robust methodological tool, adapted to regional soil and climatic conditions, is lacking. In addition, there is a demand from farmers and institutions interested in direct actions to preserve the soil. The objective of this project is to assess physical, chemical and biological soil degradation in agroecosystems of Córdoba. We propose to develop a tool that consists of a set of physical, chemical and biological indicators, with threshold values, integrated in soil degradation indices. The study area is a region with more than 100 years of agriculture. The methodology begins with the characterization of land use and management systems and the obtaining of base maps by means of remote sensing and survey. Sampling sites will be selected through a semi-directed methodology using GIS, ensuring at least one sampling point by mapping unit. Reference sites will be chosen as close to a natural condition. The proposed indicators emerge from previous works of the group, selected based on international standards and appropriate for the local soils. To obtain the thresholds, we will use, by one side, values from the literature, and by the other, values generated from the statistical distribution of the indicator in the reference soils. To standardize indicators transformation functions will be defined. Indicators will be weighted by mans of multivariate analysis and integrated in soil degradation indices. The approach concluded with the development of two instruments for decision making: a regional scale one, consisting in degradation maps based on environmental, land use and management systems mapping units; and an instrument at a plot level which will report on soil degradation of a particular plot compared to reference soils.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Landscape classification tackles issues related to the representation and analysis of continuous and variable ecological data. In this study, a methodology is created in order to define topo-climatic landscapes (TCL) in the north-west of Catalonia (north-east of the Iberian Peninsula). TCLs relate the ecological behaviour of a landscape in terms of topography, physiognomy and climate, which compound the main drivers of an ecosystem. Selected variables are derived from different sources such as remote sensing and climatic atlas. The proposed methodology combines unsupervised interative cluster classification with a supervised fuzzy classification. As a result, 28 TCLs have been found for the study area which may be differentiated in terms of vegetation physiognomy and vegetation altitudinal range type. Furthermore a hierarchy among TCLs is set, enabling the merging of clusters and allowing for changes of scale. Through the topo-climatic landscape map, managers may identify patches with similar environmental conditions and asses at the same time the uncertainty involved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Satellite remote sensing imagery is used for forestry, conservation and environmental applications, but insufficient spatial resolution, and, in particular, unavailability of images at the precise timing required for a given application, often prevent achieving a fully operational stage. Airborne remote sensing has the advantage of custom-tuned sensors, resolution and timing, but its price prevents using it as a routine technique for the mentioned fields. Some Unmanned Aerial Vehicles might provide a “third way” solution as low-cost techniques for acquiring remotely sensed information, under close control of the end-user, albeit at the expense of lower quality instrumentation and instability. This report evaluates a light remote sensing system based on a remotely-controlled mini-UAV (ATMOS-3) equipped with a color infra-red camera (VEGCAM-1) designed and operated by CATUAV. We conducted a testing mission over a Mediterranean landscape dominated by an evergreen woodland of Aleppo pine (Pinus halepensis) and (Holm) oak (Quercus ilex) in the Montseny National Park (Catalonia, NE Spain). We took advantage of state-of-the-art ortho-rectified digital aerial imagery (acquired by the Institut Cartogràfic de Catalunya over the area during the previous year) and used it as quality reference. In particular, we paid attention to: 1) Operationality of flight and image acquisition according to a previously defined plan; 2) Radiometric and geometric quality of the images; and 3) Operational use of the images in the context of applications. We conclude that the system has achieved an operational stage regarding flight activities, although with meteorological limits set by wind speed and turbulence. Appropriate landing areas can be sometimes limiting also, but the system is able to land on small and relatively rough terrains such as patches of grassland or short matorral, and we have operated the UAV as far as 7 km from the control unit. Radiometric quality is sufficient for interactive analysis, but probably insufficient for automated processing. A forthcoming camera is supposed to greatly improve radiometric quality and consistency. Conventional GPS positioning through time synchronization provides coarse orientation of the images, with no roll information.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Land cover classification is a key research field in remote sensing and land change science as thematic maps derived from remotely sensed data have become the basis for analyzing many socio-ecological issues. However, land cover classification remains a difficult task and it is especially challenging in heterogeneous tropical landscapes where nonetheless such maps are of great importance. The present study aims to establish an efficient classification approach to accurately map all broad land cover classes in a large, heterogeneous tropical area of Bolivia, as a basis for further studies (e.g., land cover-land use change). Specifically, we compare the performance of parametric (maximum likelihood), non-parametric (k-nearest neighbour and four different support vector machines - SVM), and hybrid classifiers, using both hard and soft (fuzzy) accuracy assessments. In addition, we test whether the inclusion of a textural index (homogeneity) in the classifications improves their performance. We classified Landsat imagery for two dates corresponding to dry and wet seasons and found that non-parametric, and particularly SVM classifiers, outperformed both parametric and hybrid classifiers. We also found that the use of the homogeneity index along with reflectance bands significantly increased the overall accuracy of all the classifications, but particularly of SVM algorithms. We observed that improvements in producer’s and user’s accuracies through the inclusion of the homogeneity index were different depending on land cover classes. Earlygrowth/degraded forests, pastures, grasslands and savanna were the classes most improved, especially with the SVM radial basis function and SVM sigmoid classifiers, though with both classifiers all land cover classes were mapped with producer’s and user’s accuracies of around 90%. Our approach seems very well suited to accurately map land cover in tropical regions, thus having the potential to contribute to conservation initiatives, climate change mitigation schemes such as REDD+, and rural development policies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective Biomonitoring of solvents using the unchanged substance in urine as exposure indicator is still relatively scarce due to some discrepancies between the results reported in the literature. Based on the assessment of toluene exposure, the aim of this work was to evaluate the effects of some steps likely to bias the results and to measure urinary toluene both in volunteers experimentally exposed and in workers of rotogravure factories. Methods Static headspace was used for toluene analysis. o-Cresol was also measured for comparison. Urine collection, storage and conservation conditions were studied to evaluate possible loss or contamination of toluene in controlled situations applied to six volunteers in an exposure chamber according to four scenarios with exposure at stable levels from 10 to 50 ppm. Kinetics of elimination of toluene were determined over 24 h. A field study was then carried out in a total of 29 workers from two rotogravure printing facilities. Results Potential contamination during urine collection in the field is confirmed to be a real problem but technical precautions for sampling, storage and analysis can be easily followed to control the situation. In the volunteers at rest, urinary toluene showed a rapid increase after 2 h with a steady level after about 3 h. At 47.1 ppm the mean cumulated excretion was about 0.005% of the amount of the toluene ventilated. Correlation between the toluene levels in air and in end of exposure urinary sample was excellent (r = 0.965). In the field study, the median personal exposure to toluene was 32 ppm (range 3.6-148). According to the correlations between environmental and biological monitoring data, the post-shift urinary toluene (r = 0.921) and o-cresol (r = 0.873) concentrations were, respectively, 75.6 mu g/l and 0.76 mg/g creatinine for 50 ppm toluene personal exposure. The corresponding urinary toluene concentration before the next shift was 11 mu g/l (r = 0.883). Conclusion Urinary toluene was shown once more time a very interesting surrogate to o-cresol and could be recommended as a biomarker of choice for solvent exposure. [Authors]