913 resultados para Engineering Systems
Resumo:
Robots are needed to perform important field tasks such as hazardous material clean-up, nuclear site inspection, and space exploration. Unfortunately their use is not widespread due to their long development times and high costs. To make them practical, a modular design approach is proposed. Prefabricated modules are rapidly assembled to give a low-cost system for a specific task. This paper described the modular design problem for field robots and the application of a hierarchical selection process to solve this problem. Theoretical analysis and an example case study are presented. The theoretical analysis of the modular design problem revealed the large size of the search space. It showed the advantages of approaching the design on various levels. The hierarchical selection process applies physical rules to reduce the search space to a computationally feasible size and a genetic algorithm performs the final search in a greatly reduced space. This process is based on the observation that simple physically based rules can eliminate large sections of the design space to greatly simplify the search. The design process is applied to a duct inspection task. Five candidate robots were developed. Two of these robots are evaluated using detailed physical simulation. It is shown that the more obvious solution is not able to complete the task, while the non-obvious asymmetric design develop by the process is successful.
Resumo:
This paper presents a theoretical model developed for estimating the power, the optical signal to noise ratio and the number of generated carriers in a comb generator, having as a reference the minimum optical signal do noise ratio at the receiver input, for a given fiber link. Based on the recirculating frequency shifting technique, the generator relies on the use of coherent and orthogonal multi-carriers (Coherent-WDM) that makes use of a single laser source (seed) for feeding high capacity (above 100 Gb/s) systems. The theoretical model has been validated by an experimental demonstration, where 23 comb lines with an optical signal to noise ratio ranging from 25 to 33 dB, in a spectral window of similar to 3.5 nm, are obtained.
Resumo:
This work addresses the solution to the problem of robust model predictive control (MPC) of systems with model uncertainty. The case of zone control of multi-variable stable systems with multiple time delays is considered. The usual approach of dealing with this kind of problem is through the inclusion of non-linear cost constraint in the control problem. The control action is then obtained at each sampling time as the solution to a non-linear programming (NLP) problem that for high-order systems can be computationally expensive. Here, the robust MPC problem is formulated as a linear matrix inequality problem that can be solved in real time with a fraction of the computer effort. The proposed approach is compared with the conventional robust MPC and tested through the simulation of a reactor system of the process industry.
Resumo:
In this paper, a modeling technique for small-signal stability assessment of unbalanced power systems is presented. Since power distribution systems are inherently unbalanced, due to its lines and loads characteristics, and the penetration of distributed generation into these systems is increasing nowadays, such a tool is needed in order to ensure a secure and reliable operation of these systems. The main contribution of this paper is the development of a phasor-based model for the study of dynamic phenomena in unbalanced power systems. Using an assumption on the net torque of the generator, it is possible to precisely define an equilibrium point for the phasor model of the system, thus enabling its linearization around this point, and, consequently, its eigenvalue/eigenvector analysis for small-signal stability assessment. The modeling technique presented here was compared to the dynamic behavior observed in ATP simulations and the results show that, for the generator and controller models used, the proposed modeling approach is adequate and yields reliable and precise results.
Resumo:
Linear parameter varying (LPV) control is a model-based control technique that takes into account time-varying parameters of the plant. In the case of rotating systems supported by lubricated bearings, the dynamic characteristics of the bearings change in time as a function of the rotating speed. Hence, LPV control can tackle the problem of run-up and run-down operational conditions when dynamic characteristics of the rotating system change significantly in time due to the bearings and high vibration levels occur. In this work, the LPV control design for a flexible shaft supported by plain journal bearings is presented. The model used in the LPV control design is updated from unbalance response experimental results and dynamic coefficients for the entire range of rotating speeds are obtained by numerical optimization. Experimental implementation of the designed LPV control resulted in strong reduction of vibration amplitudes when crossing the critical speed, without affecting system behavior in sub- or supercritical speeds. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
The use of standard reference electrodes, such as Ag/AgCl or saturated calomel electrodes, in potentiometric and amperometric studies involving miniaturized electrochemical systems, or those operating under positive hydraulic pressure, is often impractical. Placement of the reference electrode in the direct vicinity of the working electrode is often prohibited by the dimensions or layout of the electrochemical cell, while the alternative strategy of locating the reference electrode in a separate compartment often leads to electrolyte leakage and contamination of the system. In the present study, we have investigated the functionality of a pseudoreference electrode comprising a platinum wire, one end of which was maintained in intimate contact with the internal solution of an Ag/AgCl reference electrode while the other was connected, via a BNC connector, to a platinum probe located within the electrochemical cell. Linear and cyclic voltammetric studies, involving both aqueous and nonaqueous electrolytes, were carried out using the pseudoreference electrode and an electrochemical cup-type cell with three electrodes or an electrochemical flow reactor. In all cases, the functionality of the Pt//Ag/AgCl system was similar to that of a conventional Ag/AgCl reference electrode. Variations in the electrolyte did not alter the potential or voltammetric profile recorded when using the pseudoreference system, although peak currents were generally improved and potential values shifted by approximately +350 mV in comparison with the Ag/AgCl electrode, therefore, the system pseudoreference can be applied in any electrochemical system due to the constant potential difference. It is concluded that the pseudoreference electrode can be used with advantage to obtain potentiometric and amperometric measurements in both simple and complex electrochemical systems.
Resumo:
The partitioning of Clavulanic Acid (CA) in a novel inexpensive and stable aqueous two-phase system (ATPS) composed by poly(ethylene glycol) (PEG) and sodium polyacrylate (NaPA) has been studied. The aqueous two-phase systems are formed by mixing both polymers with a salt (NaCl or Na2SO4) and an aqueous solution of CA. The stability of CA on the presence of both polymers was investigated and it was observed that these polymers do not degrade the biomolecule. The effect of PEG-molecular size, polymer concentrations on the commercial CA partitioning has been studied, at 25 degrees C. The data showed that commercial CA was preferentially partitioned for the PEG-rich phase with a partition coefficient (K-CA) between 1 and 12 in the PEG/NaPA aqueous two phase systems supplemented with NaCl and Na2SO4. The partition to the PEG phase was increased in the systems with high polymer concentrations. Furthermore, Na2SO4 caused higher CA preference for the PEG-phase than NaCl. The systems having a composition with 10 wt.% of PEG4000, 20 wt.% of NaPA8000 and 6 wt.% of Na2SO4 were selected as the optimal ones in terms of recovery of CA from fermented broth of Streptomyces clavuligerus. The partitioning results (K-CA = 9.15 +/- 1.06) are competitive with commercial extraction methods of CA (K-CA = 11.91 +/- 2.08) which emphasizes that the system PEG/NaPA/Na2SO4 can be used as a new process to CA purification/concentration from fermented broth. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Feedback stabilization of an ensemble of non interacting half spins described by the Bloch equations is considered. This system may be seen as an interesting example for infinite dimensional systems with continuous spectra. We propose an explicit feedback law that stabilizes asymptotically the system around a uniform state of spin +1/2 or -1/2. The proof of the convergence is done locally around the equilibrium in the H-1 topology. This local convergence is shown to be a weak asymptotic convergence for the H-1 topology and thus a strong convergence for the C topology. The proof relies on an adaptation of the LaSalle invariance principle to infinite dimensional systems. Numerical simulations illustrate the efficiency of these feedback laws, even for initial conditions far from the equilibrium. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
A power transformer needs continuous monitoring and fast protection as it is a very expensive piece of equipment and an essential element in an electrical power system. The most common protection technique used is the percentage differential logic, which provides discrimination between an internal fault and different operating conditions. Unfortunately, there are some operating conditions of power transformers that can mislead the conventional protection affecting the power system stability negatively. This study proposes the development of a new algorithm to improve the protection performance by using fuzzy logic, artificial neural networks and genetic algorithms. An electrical power system was modelled using Alternative Transients Program software to obtain the operational conditions and fault situations needed to test the algorithm developed, as well as a commercial differential relay. Results show improved reliability, as well as a fast response of the proposed technique when compared with conventional ones.
Resumo:
This new and general method here called overflow current switching allows a fast, continuous, and smooth transition between scales in wide-range current measurement systems, like electrometers. This is achieved, using a hydraulic analogy, by diverting only the overflow current, such that no slow element is forced to change its state during the switching. As a result, this approach practically eliminates the long dead time in low-current (picoamperes) switching. Similar to a logarithmic scale, a composition of n adjacent linear scales, like a segmented ruler, measures the current. The use of a linear wide-range system based on this technique assures fast and continuous measurement in the entire range, without blind regions during transitions and still holding suitable accuracy for many applications. A full mathematical development of the method is given. Several computer realistic simulations demonstrated the viability of the technique.
Resumo:
The rural electrification is characterized by geographical dispersion of the population, low consumption, high investment by consumers and high cost. Moreover, solar radiation constitutes an inexhaustible source of energy and in its conversion into electricity photovoltaic panels are used. In this study, equations were adjusted to field conditions presented by the manufacturer for current and power of small photovoltaic systems. The mathematical analysis was performed on the photovoltaic rural system I- 100 from ISOFOTON, with power 300 Wp, located at the Experimental Farm Lageado of FCA/UNESP. For the development of such equations, the circuitry of photovoltaic cells has been studied to apply iterative numerical methods for the determination of electrical parameters and possible errors in the appropriate equations in the literature to reality. Therefore, a simulation of a photovoltaic panel was proposed through mathematical equations that were adjusted according to the data of local radiation. The results have presented equations that provide real answers to the user and may assist in the design of these systems, once calculated that the maximum power limit ensures a supply of energy generated. This real sizing helps establishing the possible applications of solar energy to the rural producer and informing the real possibilities of generating electricity from the sun.
Resumo:
In this paper, we perform a thorough analysis of a spectral phase-encoded time spreading optical code division multiple access (SPECTS-OCDMA) system based on Walsh-Hadamard (W-H) codes aiming not only at finding optimal code-set selections but also at assessing its loss of security due to crosstalk. We prove that an inadequate choice of codes can make the crosstalk between active users to become large enough so as to cause the data from the user of interest to be detected by other user. The proposed algorithm for code optimization targets code sets that produce minimum bit error rate (BER) among all codes for a specific number of simultaneous users. This methodology allows us to find optimal code sets for any OCDMA system, regardless the code family used and the number of active users. This procedure is crucial for circumventing the unexpected lack of security due to crosstalk. We also show that a SPECTS-OCDMA system based on W-H 32(64) fundamentally limits the number of simultaneous users to 4(8) with no security violation due to crosstalk. More importantly, we prove that only a small fraction of the available code sets is actually immune to crosstalk with acceptable BER (<10(-9)) i.e., approximately 0.5% for W-H 32 with four simultaneous users, and about 1 x 10(-4)% for W-H 64 with eight simultaneous users.
Resumo:
Building facilities have become important infrastructures for modern productive plants dedicated to services. In this context, the control systems of intelligent buildings have evolved while their reliability has evidently improved. However, the occurrence of faults is inevitable in systems conceived, constructed and operated by humans. Thus, a practical alternative approach is found to be very useful to reduce the consequences of faults. Yet, only few publications address intelligent building modeling processes that take into consideration the occurrence of faults and how to manage their consequences. In the light of the foregoing, a procedure is proposed for the modeling of intelligent building control systems, considersing their functional specifications in normal operation and in the of the event of faults. The proposed procedure adopts the concepts of discrete event systems and holons, and explores Petri nets and their extensions so as to represent the structure and operation of control systems for intelligent buildings under normal and abnormal situations. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Model predictive control (MPC) applications in the process industry usually deal with process systems that show time delays (dead times) between the system inputs and outputs. Also, in many industrial applications of MPC, integrating outputs resulting from liquid level control or recycle streams need to be considered as controlled outputs. Conventional MPC packages can be applied to time-delay systems but stability of the closed loop system will depend on the tuning parameters of the controller and cannot be guaranteed even in the nominal case. In this work, a state space model based on the analytical step response model is extended to the case of integrating time systems with time delays. This model is applied to the development of two versions of a nominally stable MPC, which is designed to the practical scenario in which one has targets for some of the inputs and/or outputs that may be unreachable and zone control (or interval tracking) for the remaining outputs. The controller is tested through simulation of a multivariable industrial reactor system. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
The liquid-liquid equilibria of systems composed of rice bran oil, free fatty acids, ethanol and water were investigated at temperatures ranging from 10 to 60 degrees C. The results of the present study indicated that the mutual solubility of the compounds decreased with an increase in the water content of the solvent and a decrease in the temperature of the solution. The experimental data set was correlated by applying the UNIQUAC model. The average variance between the experimental and calculated compositions was 0.35%, indicating that the model can accurately predict behavior of the compounds at different temperatures and degrees of hydration. The adjustment of interaction parameters enables both the simulation of liquid-liquid extractors for deacidification of vegetable oil and the prediction of phase compositions for the oil and alcohol-rich phases that are generated during cooling of the stream exiting the extractor (when using ethanol as the solvent). (C) 2012 Elsevier Ltd. All rights reserved.