966 resultados para Electromagnetic Phenomena
Resumo:
The nanoscale interactions between adjacent layers of layer-by-layer (LBL) films from poly(allylamine hydrochloride) (PAH) and azodye Brilliant Yellow (BY) have been investigated, with the films employed for optical storage and the formation of surface-relief gratings. Using Fourier transform infrared spectroscopy, we identified interactions involving SO3- groups from BY and NH3+ groups from PAH. These electrostatic interactions were responsible for the slow kinetics of writing in the optical storage experiments, due to a tendency to hinder photoisomerization and the subsequent reorientation of the azochromophores. The photoinduced birefringence did not saturate after one hour of exposure to the writing laser, whereas in azopolymer films, saturation is normally reached within a few minutes. on the other hand, the presence of such interactions prevented thermal relaxation of the chromophores after the writing laser was switched off, leading to a very stable written pattern. Moreover, the nanoscale interactions promoted mass transport for photoinscription of surface-relief gratings on PAH/BY LBL films, with the azochromophores being able to drag the inert PAH chains when undergoing the trans-cis-trans photoisomerization cycles. A low level of chromophore degradation was involved in the SRG photoinscription, which was confirmed with micro-Raman and fluorescence spectroscopies.
Resumo:
This paper presents a new non-destructive testing (NDT) for reinforced concrete structures, in order to identify the components of their reinforcement. A time varying electromagnetic field is generated close to the structure by electromagnetic devices specially designed for this purpose. The presence of ferromagnetic materials (the steel bars of the reinforcement) immersed in the concrete disturbs the magnetic field at the surface of the structure. These field alterations are detected by sensors coils placed on the concrete surface. Variations in position and cross section (the size) of steel bars immersed in concrete originate slightly different values for the induced voltages at the coils.. The values for the induced voltages were obtained in laboratory tests, and multi-layer perceptron artificial neural networks with Levemberg-Marquardt training algorithm were used to identify the location and size of the bar. Preliminary results can be considered very good.
Resumo:
In this article, it is represented by state variables phase a transmission line which parameters are considered frequency independently and frequency dependent. Based on previous analyses, it is used the reasonable number of p circuits and the number of blocks composed by parallel resistor and inductor for reduction of numerical oscillations. It is analyzed the influence of the increase of the RL parallel blocks in the obtained results. The RL parallel blocks are used for inclusion of the frequency influence in the transmission line longitudinal parameter. It is a simple model that is been used by undergraduate students for simulation of traveling wave phenomena in transmission lines. Considering the model without frequency influence, it is included a representation of the corona effect. Some simulations are carried considering the corona effect and they are compared to the results without this phenomenon.
Resumo:
This paper made an analysis of some numerical integration methods that can be used in electromagnetic transient simulations. Among the existing methods, we analyzed the trapezoidal integration method (or Heun formula), Simpson's Rule and Runge-Kutta. These methods were used in simulations of electromagnetic transients in power systems, resulting from switching operations and maneuvers that occur in transmission lines. Analyzed the characteristics such as accuracy, computation time and robustness of the methods of integration.
Resumo:
To study the influence of Ga addition on photoinduced effect, GaGeS glasses with constant atomic ratio S/Ge = 2.6 have been prepared. Using Raman spectroscopy, we have reported the effect of Ga on the structural behavior of these glasses. An increase of the glass transition temperature T(g), the linear refractive index and the density have been observed with increasing gallium content. The photoinduced phenomena have been examined through the influence of time exposure and power density, when exposed to above light bandgap (3.53 eV). The correlation between photoinduced phenomena and Ga content in such glasses are shown hereby. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Sudden eccentricity increases of asteroidal motion in 3/1 resonance with Jupiter were discovered and explained by J. Wisdom through the occurrence of jumps in the action corresponding to the critical angle (resonant combination of the mean motions). We pursue some aspects of this mechanism, which could be termed relaxation-chaos: that is, an unconventional form of homoclinic behavior arising in perturbed integrable Hamiltonian systems for which the KAM theorem hypothesis do not hold. © 1987.
Resumo:
We make a change of variables and a time reparametrization in the Schrödinger equation in order to obtain the propagator of a charged oscillator with a time-dependent mass and frequency under the influence of time-varying electric and magnetic fields, in terms of the simple propagators of harmonic oscillators with constant frequencies and masses. We also discuss the Jackiw transformation and others as a particular case of ours. © 1991.
Resumo:
The nucleation and growth model, which is usually applied to switching phenomena, is adapted for explaining surface potential measurements on the P(VDF-TrFE) (polyvinylidene fluoride-trifluoroethylene) copolymer obtained in a constant current corona triode. It is shown that the growth is one-dimensional and that the nucleation rate is unimportant, probably because surface potential measurements take much longer than the switching ones. The surface potential data can therefore be accounted for by a growth model in which the velocity of growth varies exponentially with the electric field. Since hysteresis loops can be obtained from surface potential measurements, it is suggested that similar mechanisms can be used when treating switching and hysteresis phenomena, provided that account is taken of the difference in the time scale of the measurements.
Resumo:
A prescription for computing the symmetric energy-momentum tensor from the field equations is presented. The method is then used to obtain the total energy and momentum for the electromagnetic field described by Maxwell electrodynamics, Born-Infeld nonlinear electrodynamics, and Podolsky generalized electrodynamics, respectively. © 1997 American Association of Physics Teachers.
Resumo:
An alternative formulation for guided electromagnetic fields in grounded chiral slabs is presented. This formulation is formally equivalent to the double Fourier transform method used by the authors to calculate the spectral fields in open chirostrip structures. In this paper, we have addressed the behavior of the electromagnetic fields in the vicinity of the ground plane and at the interface between the chiral substrate and the free space region. It was found that the boundary conditions for the magnetic field, valid for achiral media, are not completely satisfied when we deal with chiral material. Effects of chirality on electromagnetic field distributions and on surface wave dispersion curves were also analyzed.
Resumo:
In the framework of the teleparallel equivalent of general relativity, we study the dynamics of a gravitationally coupled electromagnetic field. It is shown that the electromagnetic field is able not only to couple to torsion, but also, through its energy-momentum tensor, produce torsion. Furthermore, it is shown that the coupling of the electromagnetic field with torsion preserves the local gauge invariance of Maxwell's theory.
Resumo:
The purpose of the present study was to emphasize the technique of micro-marsupialization as an alternative for the treatment of mucus retention phenomena. Out of 41 patients, 14 were selected for treatment by the micro-marsupialization technique on the basis of clinical criteria. Patient age ranged from 5-9 years. The technique was performed as follows: the area was disinfected with 0.1% iodine; a topical anesthetic was applied to cover the entire lesion for approximately 3 min; a 4.0 silk suture was passed through the internal part of the lesion along its widest diameter; and a surgical knot was made. Of the original 14 patients treated by the micro-marsupialization technique, 12 presented full regression one week after treatment. Recurrence occurred in two cases. It was possible to conclude that the micro-marsupialization technique is an alternative to be considered, especially in pediatric dentistry.
Resumo:
We investigate the effect of different forms of relativistic spin coupling of constituent quarks in the nucleon electromagnetic form factors. The four-dimensional integrations in the two-loop Feynman diagram are reduced to the null-plane, such that the light-front wave function is introduced in the computation of the form factors. The neutron charge form factor is very sensitive to different choices of spin coupling schemes, once its magnetic moment is fitted to the experimental value. The scalar coupling between two quarks is preferred by the neutron data, when a reasonable fit of the proton magnetic momentum is found. (C) 2000 Elsevier Science B.V.
Resumo:
The linear properties of an electromagnetic drift-wave model are examined. The linear system is non-normal in that its eigenvectors are not orthogonal with respect to the energy inner product. The non-normality of the linear evolution operator can lead to enhanced finite-time growth rates compared to modal growth rates. Previous work with an electrostatic drift-wave model found that nonmodal behavior is important in the hydrodynamic limit. Here, similar behavior is seen in the hydrodynamic regime even with the addition of magnetic fluctuations. However, unlike the results for the electrostatic drift-wave model, nonmodal behavior is also important in the adiabatic regime with moderate to strong magnetic fluctuations. © 2000 American Institute of Physics.