935 resultados para ENDOCRINOLOGY
Resumo:
The effect of graded levels of hyperinsulinemia on energy expenditure, while euglycemia was maintained by glucose infusion, was examined in 22 healthy young male volunteers by using the euglycemic insulin clamp technique in combination with indirect calorimetry. Insulin was infused at five rates to achieve steady-state hyperinsulinemic plateaus of 62 +/- 4, 103 +/- 5, 170 +/- 10, 423 +/- 16, and 1,132 +/- 47 microU/ml. Total body glucose uptake during each of the five insulin clamp studies was 0.41, 0.50, 0.66, 0.74, and 0.77 g/min, respectively. Glucose storage (calculated from the difference between total body glucose uptake minus total glucose oxidation) was 0.25, 0.29, 0.43, 0.49, and 0.52 g/min for each group, respectively, and represented over 60-70% of total glucose uptake. The net increment in energy expenditure after intravenous glucose was 0.08, 0.10, 0.14, 0.17, and 0.23 kcal/min, respectively. Throughout the physiological and supraphysiological range of insulinemia, there was a significant relationship (r = 0.95, P less than 0.001) between the increment in energy expenditure and glucose storage, indicating an energy cost of 0.45 kcal/g glucose stored. However, at each level of hyperinsulinemia, the theoretical value for the energy cost of glucose storage (assuming that all of the glucose is stored in the form of glycogen) could account for only 45-63% of the actual increase in energy expenditure that was measured by indirect calorimetry. These results indicate that factors in addition to glucose storage as glycogen must be responsible for the increase in energy expenditure that accompanies glucose infusion.
Resumo:
Investigating metabolism by unveiling the functions of the nuclear receptors peroxisome proliferator-activated receptors (PPARs) in the numerous intricate pathways ensuring energy homeostasis and fitness has been extremely rewarding. Major lines of research were initially determined by the first-characterized crucial roles of PPARalpha in fatty oxidation and of PPARgamma in adipocyte differentiation and lipid storage. Today, the molecular bases of the functional links between glucose, lipid, and protein metabolism, under the important but nonexclusive control of PPARalpha and PPARgamma, are starting to be uncovered. In addition, in the last couple of years evidence has been provided for an important role of PPARbeta (delta) in lipid metabolism. Inevitably, such actors of metabolic homeostasis are implicated in the physiopathology of complex metabolic disorders, such as those constituting the metabolic syndrome, resulting in atherosclerosis and cardiovascular diseases. This review presents a summary of the recent findings on their dual involvement in health and disease.
Resumo:
Leptin, the 16,000 molecular weight protein product of the obese gene, was originally considered as an adipocyte-derived signaling molecule for the central control of metabolism. However, leptin has been suggested to be involved in other functions during pregnancy, particularly in placenta, in which it was found to be expressed. In the present work, we have found that recombinant human chorionic gonadotropin (hCG) added to BeWo choriocarcinoma cell line showed a stimulatory effect on endogenous leptin expression, when analyzed by Western blot. This effect was time and dose dependent. Maximal effect was achieved at hCG 100 IU/ml. Moreover, hCG treatment enhanced leptin promoter activity up to 12.9 times, evaluated by transient transfection with a plasmid construction containing different promoter regions and the reporter gene luciferase. This effect was dose dependent and evidenced with all the promoter regions analyzed, regardless of length. Similar results were obtained with placental explants, thus indicating physiological relevance. Because hCG signal transduction usually involves cAMP signaling, this pathway was analyzed. Contrarily, we found that dibutyryl cAMP counteracted hCG effect on leptin expression. Furthermore, cotransfection with the catalytic subunit of PKA and/or the transcription factor cAMP response element binding protein repressed leptin expression. Thereafter we determined that hCG effect could be partially blocked by pharmacologic inhibition of MAPK pathway with 50 microM PD98059 but not by the inhibition of the phosphatidylinositol 3-kinase pathway with 0.1 microm wortmannin. Moreover, hCG treatment promoted MAPK kinase and ERK1/ERK2 phosphorylation in placental cells. Finally, cotransfection with a dominant-negative mutant of MAPK blocked the hCG-mediated activation of leptin expression. In conclusion, we provide some evidence suggesting that hCG induces leptin expression in trophoblastic cells probably involving the MAPK signal transduction pathway.
Resumo:
In autoimmune type 1 diabetes mellitus, proinflammatory cytokine-mediated apoptosis of beta-cells has been considered to be the first event directly responsible for beta-cell mass reduction. In the Bio-Breeding (BB) rat, an in vivo model used in the study of autoimmune diabetes, beta-cell apoptosis is observed from 9 wk of age and takes place after an insulitis period that begins at an earlier age. Previous studies by our group have shown an antiproliferative effect of proinflammatory cytokines on cultured beta-cells in Wistar rats, an effect that was partially reversed by Exendin-4, an analogue of glucagon-like peptide-1. In the current study, the changes in beta-cell apoptosis and proliferation during insulitis stage were also determined in pancreatic tissue sections in normal and thymectomized BB rats, as well as in Wistar rats of 5, 7, 9, and 11 wk of age. Although stable beta-cell proliferation in Wistar and thymectomized BB rats was observed along the course of the study, a decrease in beta-cell proliferation and beta-cell mass from the age of 5 wk, and prior to the commencement of apoptosis, was noted in BB rats. Exendin-4, in combination with anti-interferon-gamma antibody, induced a near-total recovery of beta-cell proliferation during the initial stages of insulitis. This highlights the importance of early intervention and, as well, the possibilities of new therapeutic approaches in preventing autoimmune diabetes by acting, initially, in the insulitis stage and, subsequently, on beta-cell regeneration and on beta-cell apoptosis.
Resumo:
CONTEXT: Cirrhosis after viral hepatitis has been identified as a risk factor for osteoporosis in men. However, in postmenopausal women, most studies have evaluated the effect of primary biliary cirrhosis, but little is known about the effect of viral cirrhosis on bone mass [bone mineral density (BMD)] and bone metabolism. OBJECTIVE: Our objective was to assess the effect of viral cirrhosis on BMD and bone metabolism in postmenopausal women. DESIGN: We conducted a cross-sectional descriptive study. SETTING AND PATIENTS: We studied 84 postmenopausal female outpatients with viral cirrhosis and 96 healthy postmenopausal women from the general community. BMD was measured by dual-energy x-ray absorptiometry at lumbar spine (LS) and femoral neck (FN). RESULTS: The percentage with osteoporosis did not significantly differ between patients (LS, 43.1%; FN, 32.2%) and controls (LS, 41.2%; FN, 29.4%), and there was no difference in BMD (z-score) between groups. Serum concentrations of soluble TNF receptors, estradiol, and osteoprotegerin (OPG) were significantly higher in patients vs. controls (P < 0.001, P < 0.05, and P < 0.05, respectively). No significant difference was observed in urinary deoxypyridinoline. Serum OPG levels were positively correlated with soluble TNF receptors (r = 0.35; P < 0.02) and deoxypyridinoline (r = 0.37; P < 0.05). CONCLUSIONS: This study shows that bone mass and bone resorption rates do not differ between postmenopausal women with viral cirrhosis and healthy postmenopausal controls and suggests that viral cirrhosis does not appear to increase the risk of osteoporosis in these women. High serum estradiol and OPG concentrations may contribute to preventing the bone loss associated with viral cirrhosis in postmenopausal women.
Resumo:
Aim: The aim of the study was to investigate the influence of dietary intake of commercial hydrolyzed collagen (Gelatine Royal ®) on bone remodeling in pre-pubertal children. Methods: A randomized double-blind study was carried out in 60 children (9.42 ± 1.31 years) divided into three groups according to the amount of partially hydrolyzed collagen taken daily for 4 months: placebo (G-I, n = 18), collagen (G-II, n = 20) and collagen + calcium (G-III, n = 22) groups. Analyses of the following biochemical markers were carried out: total and bone alkaline phosphatase (tALP and bALP), osteocalcin, tartrate-resistant acid phosphatase (TRAP), type I collagen carboxy terminal telopeptide, lipids, calcium, 25-hydroxyvitamin D, insulin-like growth factor 1 (IGF-1), thyroid-stimulating hormone, free thyroxin and intact parathormone. Results: There was a significantly greater increase in serum IGF-1 in G-III than in G II (p < 0.01) or G-I (p < 0.05) during the study period, and a significantly greater increase in plasma tALP in G-III than in G-I (p < 0.05). Serum bALP behavior significantly (p < 0.05) differed between G-II (increase) and G-I (decrease). Plasma TRAP behavior significantly differed between G-II and G-I (p < 0.01) and between G-III and G-II (p < 0.05). Conclusion: Daily dietary intake of hydrolyzed collagen seems to have a potential role in enhancing bone remodeling at key stages of growth and development.
Resumo:
OBJECTIVE Our objective was to test the efficacy and tolerability of three doses of flutamide (125, 250, and 375 mg) combined with a triphasic oral contraceptive (ethynylestradiol/levonorgestrel) during 12 months to treat moderate to severe hirsutism in patients with polycystic ovary syndrome or idiopathic hirsutism. DESIGN We conducted a randomized, double-blind, placebo-controlled, parallel clinical trial. PATIENTS A total of 131 premenopausal women, suffering from moderate to severe hirsutism, were randomized to placebo or 125, 250, or 375 mg flutamide daily associated with a triphasic oral contraceptive pill. Hirsutism (Ferriman-Gallwey), acne and seborrhea (Cremoncini), and hormone serum levels were monitored at baseline and at 3 (except hormone serum levels), 6, and 12 months. Side effects and biochemical, hematological, and hepatic parameters were assessed. METHODS We used three-way ANOVA (subject, dose, and visit) with Scheffé adjustment for multiple comparisons or nonparametrical Friedman test and least-squares mean (paired data) and Kruskall-Wallis test for unpaired data analyses. We used chi(2) or Fisher's test for categorical data. RESULTS A total of 119 patients were included in the intention-to-treat analysis. All flutamide doses induced a significant decrease in hirsutism, acne, and seborrhea scores after 12 months compared with placebo without differences among dose levels. Similar related side effects were observed with placebo and 125 mg flutamide (12.5%), and slightly higher with 250 mg (17.3%) and 375 mg (21.2%). No statistically significant differences were observed either among doses or compared with placebo. CONCLUSIONS Flutamide at 125 mg daily during 12 months was the minimum effective dose to diminish hirsutism in patients with polycystic ovary syndrome or with idiopathic hirsutism.
Resumo:
Androgen-sensitive prostate cancer cells turn androgen resistant through complex mechanisms that involve dysregulation of apoptosis. We investigated the role of antiapoptotic Bcl-xL in the progression of prostate cancer as well as the interactions of Bcl-xL with proapoptotic Bax and Bak in androgen-dependent and -independent prostate cancer cells. Immunohistochemical analysis was used to study the expression of Bcl-xL in a series of 139 prostate carcinomas and its association with Gleason grade and time to hormone resistance. Expression of Bcl-xL was more abundant in prostate carcinomas of higher Gleason grades and significantly associated with the onset of hormone-refractory disease. In vivo interactions of Bcl-xL with Bax or Bak in untreated and camptothecin-treated LNCaP and PC3 cells were investigated by means of coimmunoprecipitation. In the absence of any stimuli, Bcl-xL interacts with Bax and Bak in androgen-independent PC3 cells but only with Bak in androgen-dependent LNCaP cells. Interactions of Bcl-xL with Bax and Bak were also evidenced in lysates from high-grade prostate cancer tissues. In LNCaP cells treated with camptothecin, an inhibitor of topoisomerase I, the interaction between Bcl-xL and Bak was absent after 36 h, Bcl-xL decreased gradually and Bak increased coincidentally with the progress of apoptosis. These results support a model in which Bcl-xL would exert an inhibitory effect over Bak via heterodimerization. We propose that these interactions may provide mechanisms for suppressing the activity of proapoptotic Bax and Bak in prostate cancer cells and that Bcl-xL expression contributes to androgen resistance and progression of prostate cancer.
Resumo:
CONTEXT Six-transmembrane protein of prostate 2 (STAMP2) is a counter-regulator of inflammation and insulin resistance according to findings in mice. However, there have been contradictory reports in humans. OBJECTIVE We aimed to explore STAMP2 in association with inflammatory and metabolic status of human obesity. DESIGN, PATIENTS, AND METHODS STAMP2 gene expression was analyzed in adipose tissue samples (171 visceral and 67 sc depots) and during human preadipocyte differentiation. Human adipocytes were treated with macrophage-conditioned medium, TNF-α, and rosiglitazone. RESULTS In visceral adipose tissue, STAMP2 gene expression was significantly decreased in obese subjects, mainly in obese subjects with type 2 diabetes. STAMP2 gene expression and protein were significantly and inversely associated with obesity phenotype measures (body mass index, waist, hip, and fat mass) and obesity-associated metabolic disturbances (systolic blood pressure and fasting glucose). In addition, STAMP2 gene expression was positively associated with lipogenic (FASN, ACC1, SREBP1, THRSP14, TRα, and TRα1), CAV1, IRS1, GLUT4, and CD206 gene expression. In sc adipose tissue, STAMP2 gene expression was not associated with metabolic parameters. In both fat depots, STAMP2 gene expression in stromovascular cells was significantly higher than in mature adipocytes. STAMP2 gene expression was significantly increased during the differentiation process in parallel to adipogenic genes, being increased in preadipocytes derived from lean subjects. Macrophage-conditioned medium (25%) and TNF-α (100 ng/ml) administration increased whereas rosiglitazone (2 μM) decreased significantly STAMP2 gene expression in human differentiated adipocytes. CONCLUSIONS Decreased STAMP2 expression (mRNA and protein) might reflect visceral adipose dysfunction in subjects with obesity and type 2 diabetes.
Resumo:
The concentration of circulating glucocorticoids is regulated in response to environmental and endogenous conditions. Total circulating corticosterone, the main glucocorticoid in birds, consists of a fraction which is bound to corticosterone-binding globulins (CBG) and a free fraction. There is increasing evidence that the environment modulates free corticosterone levels through varying the concentration of CBG, but experimental evidence is lacking. To test the hypothesis that the regulation of chronic stress in response to endogenous and environmental conditions involves variation in both corticosterone release and CBG capacity, we performed an experiment with barn owl (Tyto alba) nestlings in two different years with pronounced differences in environmental conditions and in nestlings experimentally fed ad libitum. In half of the individuals we implanted a corticosterone-releasing pellet to artificially increase corticosterone levels and in the other half we implanted a placebo pellet. We then repeatedly collected blood samples to measure the change in total and free corticosterone levels as well as CBG capacity. The increase in circulating total corticosterone after artificial corticosterone administration varied with environmental conditions and with the food regime of the nestlings. The highest total corticosterone levels were found in nestlings growing up in poor environmental conditions and the lowest in ad libitum fed nestlings. CBG was highest in the year with poor environmental conditions, so that, contrary to total corticosterone, free corticosterone levels were low under poor environmental conditions. When nestlings were fed ad libitum total corticosterone, CBG and free corticosterone did not increase when administering corticosterone. These results suggest that depending on the individual history an animal experienced during development the HPA-axis is regulated differently.
Resumo:
Peroxisome proliferator-activated receptor (PPARs) are members of the nuclear receptor superfamily. For transcriptional activation of their target genes, PPARs heterodimerize with the retinoid-X receptor (RXR). The convergence of the PPAR and RXR signaling pathways has been shown to have an important function in lipid metabolism. The promoter of the gene encoding the acyl-coenzyme-A oxidase (ACO), the rate-limiting enzyme in peroxisomal beta-oxidation of fatty acids, is a target site of PPAR action. In this study, we examined the role and the contribution of both cis-and trans-acting factors in the transcriptional regulation of this gene using transient transfections in insect cells. We identified several functional cis-acting elements present in the promoter of the ACO gene and established that PPAR-dependent as well as PPAR-independent mechanisms can activate the ACO promoter in these cells. We show that the PPAR/RXR heterodimer exerts its effect through two response elements within the ACO promoter, in synergy with the transcription factor Sp1 via five Sp1-binding sites. Furthermore, this functional interaction also occurs when Sp1 is co-expressed with PPAR or RXR alone, indicating that activation can occur independently of PPAR/RXR heterodimers.
Resumo:
Glucokinase is essential for glucose-stimulated insulin release from the pancreatic beta-cell, serving as glucose sensor in humans. Inactivating or activating mutations of glucokinase lead to different forms of glucokinase disease, i.e. GCK-monogenic diabetes of youth, permanent neonatal diabetes (inactivating mutations), and congenital hyperinsulinism, respectively. Here we present a novel glucokinase gene (GCK)-activating mutation (p.E442K) found in an infant with neonatal hypoglycemia (1.5 mmol/liter) and in two other family members suffering from recurrent hypoglycemic episodes in their childhood and adult life. In contrast to the severe clinical presentation in the index case, functional studies showed only a slight activation of the protein (relative activity index of 3.3). We also report on functional studies of two inactivating mutations of the GCK (p.E440G and p.S441W), contiguous to the activating one, that lead to monogenic diabetes of youth. Interestingly, adult family members carrying the GCK pE440G mutation show an unusually heterogeneous and progressive diabetic phenotype, a feature not typical of GCK-monogenic diabetes of youth. In summary, we identified a novel activating GCK mutation that although being associated with severe neonatal hypoglycemia is characterized by the mildest activation of the glucokinase enzyme of all previously reported.
Resumo:
CONTEXT GH treatment is effective in children born small for gestational age (SGA); however, its effectiveness and safety in very young SGA children is unknown. OBJECTIVE The aim was to analyze the outcome of very young SGA children treated with GH and followed for 2 yr. The results after 24 months of treatment, compared with a control group without treatment during 12 months followed by 12 months of treatment, are shown. DESIGN We performed a multicenter, controlled, randomized, open trial. SETTINGS The pediatric endocrinology departments of 14 public hospitals in Spain participated in the study. PATIENTS Seventy-six children, aged 2-5 yr born SGA and without catch-up growth, were studied. INTERVENTION Children received GH at 0.06 mg/kg.d for 2 yr (group I) or were followed for 12 months with no treatment and then treated for 12 months (group II). MAIN OUTCOME MEASURES Age, general health status, pubertal stage, bone age, height, weight, biochemical and hormonal analyses, and adverse side effects were determined at biannual check-ups. RESULTS The mean height sd score gain for chronological age in children treated for 24 months (group I) was 2.10, whereas in those treated only during the last 12 months (group II) was 1.43. In both groups, children under 4 yr of age had the greatest gain in growth velocity. No significant acceleration of bone age or side effects related to treatment was seen. CONCLUSION Very young SGA children without spontaneous catch-up growth could benefit from GH treatment because growth was accelerated and no negative side effects were observed.
Resumo:
BACKGROUND. Transsexual persons afford a very suitable model to study the effect of sex steroids on uric acid metabolism. DESIGN. This was a prospective study to evaluate the uric acid levels and fractional excretion of uric acid (FEUA) in a cohort of 69 healthy transsexual persons, 22 male-to-female transsexuals (MFTs) and 47 female-to-male transsexuals (FMTs).The subjects were studied at baseline and 1 and 2 yr after starting cross-sex hormone treatment. RESULTS. The baseline levels of uric acid were higher in the MFT group.Compared with baseline, uric acid levels had fallen significantly after 1 yr of hormone therapy in the MFT group and had risen significantly in the FMT group. The baseline FEUA was greater in the FMT group. After 2 yr of cross-sex hormone therapy, the FEUA had increased in MFTs (P = 0.001) and fallen in FMTs (P = 0.004).In MFTs, the levels of uric acid at 2 yr were lower in those who had received higher doses of estrogens (P = 0.03),and the FEUA was higher (P = 0.04).The FEUA at 2 yr was associated with both the estrogen dose (P = 0.02) and the serum levels of estradiol-17beta (P =0.03).In MFTs, a correlation was found after 2 yr of therapy between the homeostasis model assessment of insulin resistance and the serum uric acid (r = 0.59; P = 0.01). CONCLUSIONS. Serum levels of uric acid and the FEUA are altered in transsexuals as a result of cross-sex hormone therapy.The results concerning the MFT group support the hypothesis that the lower levels of uric acid in women are due to estrogen-induced increases in FEUA.
Resumo:
Channels formed by the gap junction protein Connexin36 (CX36) contribute to the proper control of insulin secretion. We previously demonstrated that chronic exposure to glucose decreases Cx36 levels in insulin-secreting cells in vitro. Here, we investigated whether hyperglycemia also regulates Cx36 in vivo. Using a model of continuous glucose infusion in adult rats, we showed that prolonged (24-48 h) hyperglycemia reduced the Cx36 gene Gjd2 mRNA levels in pancreatic islets. Accordingly, prolonged exposure to high glucose concentrations also reduced the expression and function of Cx36 in the rat insulin-producing INS-1E cell line. The glucose effect was blocked after inhibition of the cAMP/PKA pathway and was associated with an overexpression of the inducible cAMP early repressor ICER-1/ICER-1γ, which binds to a functional cAMP-response element in the promoter of the Cx36 gene Gjd2. The involvement of this repressor was further demonstrated using an antisense strategy of ICER-1 inhibition, which prevented glucose-induced downregulation of Cx36. The data indicate that chronic exposure to glucose alters the in vivo expression of Cx36 by the insulin-producing β-cells through ICER-1/ICER-1γ overexpression. This mechanism may contribute to the reduced glucose sensitivity and altered insulin secretion, which contribute to the pathophysiology of diabetes.