892 resultados para Differenzial Imaging, Principal Component Analysis, esopianeti, SPHERE, IFS
Resumo:
Objective: Thirteen urinary nucleosides, primarily degradation products of tRNA, were evaluated as potential tumor markers for breast cancer patients.
Resumo:
Janet Taylor, Ross D King, Thomas Altmann and Oliver Fiehn (2002). Application of metabolomics to plant genotype discrimination using statistics and machine learning. 1st European Conference on Computational Biology (ECCB). (published as a journal supplement in Bioinformatics 18: S241-S248).
Resumo:
C. Shang and Q. Shen. Aiding classification of gene expression data with feature selection: a comparative study. Computational Intelligence Research, 1(1):68-76.
Resumo:
R. Zwiggelaar, T.C. Parr, J.E. Schumm. I.W. Hutt, S.M. Astley, C.J. Taylor and C.R.M. Boggis, 'Model-based detection of spiculated lesions in mammograms', Medical Image Analysis 3 (1), 39-62 (1999)
Resumo:
Elliott, G. N., Worgan, H., Broadhurst, D. I., Draper, J. H., Scullion, J. (2007). Soil differentiation using fingerprint Fourier transform infrared spectroscopy, chemometrics and genetic algorithm-based feature selection. Soil Biology & Biochemistry, 39 (11), 2888-2896. Sponsorship: BBSRC / NERC RAE2008
Resumo:
Tese apresentada à Universidade Fernando Pessoa como parte dos requisitos para obtenção do grau de Doutor em Ciências Sociais, especialidade em Psicologia
Resumo:
Anomalies are unusual and significant changes in a network's traffic levels, which can often involve multiple links. Diagnosing anomalies is critical for both network operators and end users. It is a difficult problem because one must extract and interpret anomalous patterns from large amounts of high-dimensional, noisy data. In this paper we propose a general method to diagnose anomalies. This method is based on a separation of the high-dimensional space occupied by a set of network traffic measurements into disjoint subspaces corresponding to normal and anomalous network conditions. We show that this separation can be performed effectively using Principal Component Analysis. Using only simple traffic measurements from links, we study volume anomalies and show that the method can: (1) accurately detect when a volume anomaly is occurring; (2) correctly identify the underlying origin-destination (OD) flow which is the source of the anomaly; and (3) accurately estimate the amount of traffic involved in the anomalous OD flow. We evaluate the method's ability to diagnose (i.e., detect, identify, and quantify) both existing and synthetically injected volume anomalies in real traffic from two backbone networks. Our method consistently diagnoses the largest volume anomalies, and does so with a very low false alarm rate.
Resumo:
A new deformable shape-based method for color region segmentation is described. The method includes two stages: over-segmentation using a traditional color region segmentation algorithm, followed by deformable model-based region merging via grouping and hypothesis selection. During the second stage, region merging and object identification are executed simultaneously. A statistical shape model is used to estimate the likelihood of region groupings and model hypotheses. The prior distribution on deformation parameters is precomputed using principal component analysis over a training set of region groupings. Once trained, the system autonomously segments deformed shapes from the background, while not merging them with similarly colored adjacent objects. Furthermore, the recovered parametric shape model can be used directly in object recognition and comparison. Experiments in segmentation and image retrieval are reported.
Resumo:
BACKGROUND: West Virginia has the worst oral health in the United States, but the reasons for this are unclear. This pilot study explored the etiology of this disparity using culture-independent analyses to identify bacterial species associated with oral disease. METHODS: Bacteria in subgingival plaque samples from twelve participants in two independent West Virginia dental-related studies were characterized using 16S rRNA gene sequencing and Human Oral Microbe Identification Microarray (HOMIM) analysis. Unifrac analysis was used to characterize phylogenetic differences between bacterial communities obtained from plaque of participants with low or high oral disease, which was further evaluated using clustering and Principal Coordinate Analysis. RESULTS: Statistically different bacterial signatures (P<0.001) were identified in subgingival plaque of individuals with low or high oral disease in West Virginia based on 16S rRNA gene sequencing. Low disease contained a high frequency of Veillonella and Streptococcus, with a moderate number of Capnocytophaga. High disease exhibited substantially increased bacterial diversity and included a large proportion of Clostridiales cluster bacteria (Selenomonas, Eubacterium, Dialister). Phylogenetic trees constructed using 16S rRNA gene sequencing revealed that Clostridiales were repeated colonizers in plaque associated with high oral disease, providing evidence that the oral environment is somehow influencing the bacterial signature linked to disease. CONCLUSIONS: Culture-independent analyses identified an atypical bacterial signature associated with high oral disease in West Virginians and provided evidence that the oral environment influenced this signature. Both findings provide insight into the etiology of the oral disparity in West Virginia.
Resumo:
BACKGROUND: Molecular tools may provide insight into cardiovascular risk. We assessed whether metabolites discriminate coronary artery disease (CAD) and predict risk of cardiovascular events. METHODS AND RESULTS: We performed mass-spectrometry-based profiling of 69 metabolites in subjects from the CATHGEN biorepository. To evaluate discriminative capabilities of metabolites for CAD, 2 groups were profiled: 174 CAD cases and 174 sex/race-matched controls ("initial"), and 140 CAD cases and 140 controls ("replication"). To evaluate the capability of metabolites to predict cardiovascular events, cases were combined ("event" group); of these, 74 experienced death/myocardial infarction during follow-up. A third independent group was profiled ("event-replication" group; n=63 cases with cardiovascular events, 66 controls). Analysis included principal-components analysis, linear regression, and Cox proportional hazards. Two principal components analysis-derived factors were associated with CAD: 1 comprising branched-chain amino acid metabolites (factor 4, initial P=0.002, replication P=0.01), and 1 comprising urea cycle metabolites (factor 9, initial P=0.0004, replication P=0.01). In multivariable regression, these factors were independently associated with CAD in initial (factor 4, odds ratio [OR], 1.36; 95% CI, 1.06 to 1.74; P=0.02; factor 9, OR, 0.67; 95% CI, 0.52 to 0.87; P=0.003) and replication (factor 4, OR, 1.43; 95% CI, 1.07 to 1.91; P=0.02; factor 9, OR, 0.66; 95% CI, 0.48 to 0.91; P=0.01) groups. A factor composed of dicarboxylacylcarnitines predicted death/myocardial infarction (event group hazard ratio 2.17; 95% CI, 1.23 to 3.84; P=0.007) and was associated with cardiovascular events in the event-replication group (OR, 1.52; 95% CI, 1.08 to 2.14; P=0.01). CONCLUSIONS: Metabolite profiles are associated with CAD and subsequent cardiovascular events.
Resumo:
Plankton collected by the Continuous Plankton Recorder (CPR) survey were investigated for the English Channel, Celtic Sea and Bay of Biscay from 1979 to 1995. The main goal was to study the relationship between climate and plankton and to understand the factors influencing it. In order to take into account the spatial and temporal structure of biological data, a three-mode principal component analysis (PCA) was developed. It not only identified 5 zones characterised by their similar biological composition and by the seasonal and inter-annual evolution of the plankton, it also made species associations based on their location and year-to-year change. The studied species have stronger year-to-year fluctuations in abundance over the English Channel and Celtic Sea than the species offshore in the Bay of Biscay. The changes in abundance of plankton in the English Channel are negatively related to inter-annual changes of climatic conditions from December to March (North Atlantic Oscillation [NAO] index and air temperature). Thus, the negative relationship shown by Fromentin and Planque (1996; Mar Ecol Prog Ser 134:111-118) between year-to-year changes of Calanus finmarchicus abundance in the northern North Atlantic and North Sea and NAO was also found for the most abundant copepods in the Channel. However, the hypothesis proposed to explain the plankton/NAO relationship is different for this region and a new hypothesis is proposed. In the Celtic Sea, a relationship between the planktonic assemblage and the air temperature was detected, but it is weaker than for the English Channel. No relationship was found for the Bay of Biscay. Thus, the local physical environment and the biological composition of these zones appear to modify the relationship between winter climatic conditions and the year-to-year fluctuations of the studied planktonic species. This shows, therefore, that the relationship between climate and plankton is difficult to generalise.
Resumo:
Regime shift and principal component analysis of a spatially disaggregated database capturing time-series of climatic, nutrient and plankton variables in the North Sea revealed considerable covariance between groups of ecosystem indicators. Plankton and climate time-series span the period 1958–2003, those of nutrients start in 1980. In both regions, the period from 1989 to 2001 identified in principal component 1 had warmer surface waters, higher Atlantic inflow and stronger winds, than the periods before or after. However, it was preceded by a regime shift in both open (PC2) and coastal (PC3) waters during 1977 towards more hours of sunlight and higher water temperature, which lasted until 1997. The relative influence of nutrient availability and climatic forcing differed between open and coastal North Sea regions. Inter-annual variability in phytoplankton dynamics of the open North Sea was primarily regulated by climatic forcing, specifically by sea surface temperature, Atlantic inflow and co-varying wind stress and NAO. Coastal phytoplankton variability, however, was regulated by insolation and sea surface temperature, as well as Si availability, but not by N or P. Regime shifts in principal components of hydrographic and climatic variables (explaining 55 and 61% of the variance in coastal and open water variables) were detected using Rodionov's sequential t-test. These shifts in hydroclimatic variables which occurred around 1977, 1989, 1997 and 2001, were synchronized in open and coastal waters, and were tracked by open water chlorophyll and copepods, but not by coastal plankton. North–central–south or open-coastal spatial breakdowns of the North Sea explained similar amounts of variability in most ecosystem indicators with the exception of diatom abundance and chlorophyll concentration, which were clearly better explained using the open-coastal configuration.
Resumo:
The Continuous Plankton Recorder (CPR) dataset on fish larvae has an extensive spatio-temporal coverage that allows the responses of fish populations to past changes in climate variability, including abrupt changes such as regime shifts, to be investigated. The newly available dataset offers a unique opportunity to investigate long-term changes over decadal scales in the abundance and distribution of fish larvae in relation to physical and biological factors. A principal component analysis (PCA) using 7 biotic and abiotic parameters is applied to investigate the impact of environmental changes in the North Sea on 5 selected taxa of fish larvae during the period 1960 to 2004. The analysis revealed 4 periods of time (1960–1976; 1977–1982; 1983–1996; 1997–2004) reflecting 3 different ecosystem states. The larvae of clupeids, sandeels, dab and gadoids seemed to be affected mainly by changes in the plankton ecosystem, while the larvae of migratory species such as Atlantic mackerel responded more to hydrographic changes. Climate variability seems more likely to influence fish populations through bottom-up control via a cascading effect from changes in the North Atlantic Oscillation (NAO) impacting on the hydro dynamic features of the North Sea, in turn impacting on the plankton available as prey for fish larvae. The responses and adaptability of fish larvae to changing environmental conditions, parti cularly to changes in prey availability, are complex and species-specific. This complexity is enhanced with fishing effects interacting with climate effects and this study supports furthering our under - standing of such interactions before attempting to predict how fish populations respond to climate variability
Resumo:
In this study, Evernia prunastri, a lichen growing in its natural habitat in Morocco was analysed for the concentration of five heavy metals (Fe, Pb, Zn, Cu and Cr) from eleven sites between Kenitra and Mohammedia cities. The control site was Dar Essalam, an isolated area with low traffic density and dense vegetation. In the investigated areas, the concentration of heavy metals was correlated with vehicular traffic, industrial activity and urbanization. The total metal concentration was highest in Sidi Yahya, followed by Mohammedia and Bouznika. The coefficient of variation was higher for Pb and lower for Cu, Zn and Fe. The concentrations of most heavy metals in the thalli differed significantly between sites (p<0.01). Principal component analysis (PCA) revealed a significant correlation between heavy metal accumulation and atmospheric purity index. This study demonstrated also that the factors most strongly affecting the lichen flora were traffic density, the petroleum industry and paper factories in these areas. Overall, these results suggest that the index of atmospheric purity and assessment of heavy metals in lichen thalli are good indicators of the air quality at the studied sites.
Resumo:
This paper presents a statistical-based fault diagnosis scheme for application to internal combustion engines. The scheme relies on an identified model that describes the relationships between a set of recorded engine variables using principal component analysis (PCA). Since combustion cycles are complex in nature and produce nonlinear relationships between the recorded engine variables, the paper proposes the use of nonlinear PCA (NLPCA). The paper further justifies the use of NLPCA by comparing the model accuracy of the NLPCA model with that of a linear PCA model. A new nonlinear variable reconstruction algorithm and bivariate scatter plots are proposed for fault isolation, following the application of NLPCA. The proposed technique allows the diagnosis of different fault types under steady-state operating conditions. More precisely, nonlinear variable reconstruction can remove the fault signature from the recorded engine data, which allows the identification and isolation of the root cause of abnormal engine behaviour. The paper shows that this can lead to (i) an enhanced identification of potential root causes of abnormal events and (ii) the masking of faulty sensor readings. The effectiveness of the enhanced NLPCA based monitoring scheme is illustrated by its application to a sensor fault and a process fault. The sensor fault relates to a drift in the fuel flow reading, whilst the process fault relates to a partial blockage of the intercooler. These faults are introduced to a Volkswagen TDI 1.9 Litre diesel engine mounted on an experimental engine test bench facility.