912 resultados para Deterioration of structures


Relevância:

90.00% 90.00%

Publicador:

Resumo:

The nasopalatine region is composed of structures such as the vomeronasal organ and nasopalatine duct. The nasopalatine duct may provide the communication of the mouth to the nasal cavity in human fetuses and can be obliterated in an adult human. Knowledge on the development of the nasopalatine region and nasopalatine duct in humans is necessary for understanding the morphology and etiopathogenesis of lesions that occur in this region. Objective: The aim of the present study was to describe the morphological aspects of the nasopalatine region in human fetuses and correlate these aspects with the development of pathologies in this region. Material and Methods: Five human fetuses with no facial or palatine abnormalities were used for the acquisition of specimens from the nasopalatine region. After demineralization, the specimens were histologically processed. Histological cuts were stained with methylene blue to orient the cutting plane and hematoxylin-eosin for the descriptive histological analysis. Results: The age of the fetuses was 8.00, 8.25, 9.00 and 9.25 weeks, and it was not possible to determine the age in the last one. The incisive canal was observed in all specimens as an opening delimited laterally by the periosteum and connecting oral and nasal cavity. The nasopalatine duct is an epithelial structure with the greatest morphological variation, with either unilateral or bilateral occurrence and total patent, partial patent and islet forms. The vomeronasal organ is a bilateral epithelized structure located alongside the nasal septum above the incisive canal in all the fetuses. Conclusions: The incisive canal, nasopalatine duct and vomeronasal organ are distinct anatomic structures. The development of nasopalatine duct cysts may occur in all forms of the nasopalatine duct.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Brazilian design code ABNT NBR6118:2003 - Design of Concrete Structures - Procedures - [1] proposes the use of simplified models for the consideration of non-linear material behavior in the evaluation of horizontal displacements in buildings. These models penalize stiffness of columns and beams, representing the effects of concrete cracking and avoiding costly physical non-linear analyses. The objectives of the present paper are to investigate the accuracy and uncertainty of these simplified models, as well as to evaluate the reliabilities of structures designed following ABNT NBR6118:2003[1&] in the service limit state for horizontal displacements. Model error statistics are obtained from 42 representative plane frames. The reliabilities of three typical (4, 8 and 12 floor) buildings are evaluated, using the simplified models and a rigorous, physical and geometrical non-linear analysis. Results show that the 70/70 (column/beam stiffness reduction) model is more accurate and less conservative than the 80/40 model. Results also show that ABNT NBR6118:2003 [1] design criteria for horizontal displacement limit states (masonry damage according to ACI 435.3R-68(1984) [10]) are conservative, and result in reliability indexes which are larger than those recommended in EUROCODE [2] for irreversible service limit states.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Resistance to corrosion, high tensile strength, low weight, easiness and rapidity of application, are characteristics that have contributed to the spread of the strengthening technique characterized by bonding of carbon fibers reinforced polymer (CFRP). This research aimed to develop an innovate strengthening method for RC beams, based on a high performance cement-based composite of steel fibers (macro + microfibers) to be applied as a transition layer. The purpose of this transition layer is better control the cracking of concrete and detain or even avoid premature debonding of strengthening. A preliminary study in short beams molded with steel fibers and strengthened with CFRP sheet, was carried out where was verified that the conception of the transition layer is valid. Tests were developed to get a cement-based composite with adequate characteristics to constitute the layer transition. Results showed the possibility to develop a high performance material with a pseudo strain-hardening behavior, high strength and fracture toughness. The application of the strengthening on the transition layer surface had significantly to improve the performance levels of the strengthened beam. It summary, it was proven the efficiency of the new strengthening technique, and much information can be used as criteria of projects for repaired and strengthened structures.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Many of the discovered exoplanetary systems are involved inside mean-motion resonances. In this work we focus on the dynamics of the 3:1 mean-motion resonant planetary systems. Our main purpose is to understand the dynamics in the vicinity of the apsidal corotation resonance (ACR) which are stationary solutions of the resonant problem. We apply the semi-analytical method (Michtchenko et al., 2006) to construct the averaged three-body Hamiltonian of a planetary system near a 3:1 resonance. Then we obtain the families of ACR, composed of symmetric and asymmetric solutions. Using the symmetric stable solutions we observe the law of structures (Ferraz-Mello,1988), for different mass ratio of the planets. We also study the evolution of the frequencies of σ1, resonant angle, and Δω, the secular angle. The resonant domains outside the immediate vicinity of ACR are studied using dynamical maps techniques. We compared the results obtained to planetary systems near a 3:1 MMR, namely 55 Cnc b-c, HD 60532 b-c and Kepler 20 b-c.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This work addresses the treatment of lower density regions of structures undergoing large deformations during the design process by the topology optimization method (TOM) based on the finite element method. During the design process the nonlinear elastic behavior of the structure is based on exact kinematics. The material model applied in the TOM is based on the solid isotropic microstructure with penalization approach. No void elements are deleted and all internal forces of the nodes surrounding the void elements are considered during the nonlinear equilibrium solution. The distribution of design variables is solved through the method of moving asymptotes, in which the sensitivity of the objective function is obtained directly. In addition, a continuation function and a nonlinear projection function are invoked to obtain a checkerboard free and mesh independent design. 2D examples with both plane strain and plane stress conditions hypothesis are presented and compared. The problem of instability is overcome by adopting a polyconvex constitutive model in conjunction with a suggested relaxation function to stabilize the excessive distorted elements. The exact tangent stiffness matrix is used. The optimal topology results are compared to the results obtained by using the classical Saint Venant–Kirchhoff constitutive law, and strong differences are found.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Vortex-Induced Vibration (VIV) experiments were carried out with yawed cylinders. The purpose was to investigate the validity of the Independence Principle (IP) for properly describing the flow characteristics and the dynamics of structures subjected to oblique flow. Five yaw angles in relation to the direction perpendicular to the free stream velocity were tested, namely View the MathML sourceθ=0°,10°,20°,30° and 45°. Both the upstream and downstream orientations were tested. The models were mounted on a leaf spring apparatus that allows experiments with one or two degrees of freedom. The Reynolds numbers based on the component normal to the cylinder axis fell in the interval 3×103of displacement and hydrodynamic forces were acquired. Considering only the component of the free stream which is normal to the cylinder axis, the results of amplitude and force coefficients agreed reasonably well with the non-yawed ones for yaw angles up to 20° for both one and two degrees-of-freedom experiments. This indicates the validity of the IP for this yaw angle range. For yaw angles larger than 20°, a decrease in the maximum amplitude was observed. The decrease in the oscillation amplitudes was related to a larger modulation in the phase shift between force and displacement. Differences in the results for upstream and downstream were observed and were more evident for the larger yaw angle. These differences can be associated to the asymmetric cylinder end conditions.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Reinforced concrete columns might fail because of buckling of the longitudinal reinforcing bar when exposed to earthquake motions. Depending on the hoop stiffness and the length-over-diameter ratio, the instability can be local (in between two subsequent hoops) or global (the buckling length comprises several hoop spacings). To get insight into the topic, an extensive literary research of 19 existing models has been carried out including different approaches and assumptions which yield different results. Finite element fiberanalysis was carried out to study the local buckling behavior with varying length-over-diameter and initial imperfection-over-diameter ratios. The comparison of the analytical results with some experimental results shows good agreement before the post buckling behavior undergoes large deformation. Furthermore, different global buckling analysis cases were run considering the influence of different parameters; for certain hoop stiffnesses and length-over-diameter ratios local buckling was encountered. A parametric study yields an adimensional critical stress in function of a stiffness ratio characterized by the reinforcement configuration. Colonne in cemento armato possono collassare per via dell’instabilità dell’armatura longitudinale se sottoposte all’azione di un sisma. In funzione della rigidezza dei ferri trasversali e del rapporto lunghezza d’inflessione-diametro, l’instabilità può essere locale (fra due staffe adiacenti) o globale (la lunghezza d’instabilità comprende alcune staffe). Per introdurre alla materia, è proposta un’esauriente ricerca bibliografica di 19 modelli esistenti che include approcci e ipotesi differenti che portano a risultati distinti. Tramite un’analisi a fibre e elementi finiti si è studiata l’instabilità locale con vari rapporti lunghezza d’inflessione-diametro e imperfezione iniziale-diametro. Il confronto dei risultati analitici con quelli sperimentali mostra una buona coincidenza fino al raggiungimento di grandi spostamenti. Inoltre, il caso d’instabilità globale è stato simulato valutando l’influenza di vari parametri; per certe configurazioni di rigidezza delle staffe e lunghezza d’inflessione-diametro si hanno ottenuto casi di instabilità locale. Uno studio parametrico ha permesso di ottenere un carico critico adimensionale in funzione del rapporto di rigidezza dato dalle caratteristiche dell’armatura.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Although Recovery is often defined as the less studied and documented phase of the Emergency Management Cycle, a wide literature is available for describing characteristics and sub-phases of this process. Previous works do not allow to gain an overall perspective because of a lack of systematic consistent monitoring of recovery utilizing advanced technologies such as remote sensing and GIS technologies. Taking into consideration the key role of Remote Sensing in Response and Damage Assessment, this thesis is aimed to verify the appropriateness of such advanced monitoring techniques to detect recovery advancements over time, with close attention to the main characteristics of the study event: Hurricane Katrina storm surge. Based on multi-source, multi-sensor and multi-temporal data, the post-Katrina recovery was analysed using both a qualitative and a quantitative approach. The first phase was dedicated to the investigation of the relation between urban types, damage and recovery state, referring to geographical and technological parameters. Damage and recovery scales were proposed to review critical observations on remarkable surge- induced effects on various typologies of structures, analyzed at a per-building level. This wide-ranging investigation allowed a new understanding of the distinctive features of the recovery process. A quantitative analysis was employed to develop methodological procedures suited to recognize and monitor distribution, timing and characteristics of recovery activities in the study area. Promising results, gained by applying supervised classification algorithms to detect localization and distribution of blue tarp, have proved that this methodology may help the analyst in the detection and monitoring of recovery activities in areas that have been affected by medium damage. The study found that Mahalanobis Distance was the classifier which provided the most accurate results, in localising blue roofs with 93.7% of blue roof classified correctly and a producer accuracy of 70%. It was seen to be the classifier least sensitive to spectral signature alteration. The application of the dissimilarity textural classification to satellite imagery has demonstrated the suitability of this technique for the detection of debris distribution and for the monitoring of demolition and reconstruction activities in the study area. Linking these geographically extensive techniques with expert per-building interpretation of advanced-technology ground surveys provides a multi-faceted view of the physical recovery process. Remote sensing and GIS technologies combined to advanced ground survey approach provides extremely valuable capability in Recovery activities monitoring and may constitute a technical basis to lead aid organization and local government in the Recovery management.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The aim of the work is to conduct a finite element model analysis on a small – size concrete beam and on a full size concrete beam internally reinforced with BFRP exposed at elevated temperatures. Experimental tests performed at Kingston University have been used to compare the results from the numerical analysis for the small – size concrete beam. Once the behavior of the small – size beam at room temperature is investigated and switching to the heating phase reinforced beams are tested at 100°C, 200°C and 300°C in loaded condition. The aim of the finite element analysis is to reflect the three – point bending test adopted into the oven during the exposure of the beam at room temperature and at elevated temperatures. Performance and deformability of reinforced beams are straightly correlated to the material properties and a wide analysis on elastic modulus and coefficient of thermal expansion is given in this work. Develop a good correlation between the numerical model and the experimental test is the main objective of the analysis on the small – size concrete beam, for both modelling the aim is also to estimate which is the deterioration of the material properties due to the heating process and the influence of different parameters on the final result. The focus of the full – size modelling which involved the last part of this work is to evaluate the effect of elevated temperatures, the material deterioration and the deflection trend on a reinforced beam characterized by a different size. A comparison between the results from different modelling has been developed.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Abstract In this study structural and finite strain data are used to explore the tectonic evolution and the exhumation history of the Chilean accretionary wedge. The Chilean accretionary wedge is part of a Late Paleozoic subduction complex that developed during subduction of the Pacific plate underneath South America. The wedge is commonly subdivided into a structurally lower Western Series and an upper Eastern Series. This study shows the progressive development of structures and finite strain from the least deformed rocks in the eastern part of the Eastern Series of the accretionary wedge to higher grade schist of the Western Series at the Pacific coast. Furthermore, this study reports finite-strain data to quantify the contribution of vertical ductile shortening to exhumation. Vertical ductile shortening is, together with erosion and normal faulting, a process that can aid the exhumation of high-pressure rocks. In the east, structures are characterized by upright chevron folds of sedimentary layering which are associated with a penetrative axial-plane foliation, S1. As the F1 folds became slightly overturned to the west, S1 was folded about recumbent open F2 folds and an S2 axial-plane foliation developed. Near the contact between the Western and Eastern Series S2 represents a prominent subhorizontal transposition foliation. Towards the structural deepest units in the west the transposition foliation became progressively flat lying. Finite-strain data as obtained by Rf/Phi and PDS analysis in metagreywacke and X-ray texture goniometry in phyllosilicate-rich rocks show a smooth and gradual increase in strain magnitude from east to west. There are no evidences for normal faulting or significant structural breaks across the contact of Eastern and Western Series. The progressive structural and strain evolution between both series can be interpreted to reflect a continuous change in the mode of accretion in the subduction wedge. Before ~320-290 Ma the rocks of the Eastern Series were frontally accreted to the Andean margin. Frontal accretion caused horizontal shortening and upright folds and axial-plane foliations developed. At ~320-290 Ma the mode of accretion changed and the rocks of the Western Series were underplated below the Andean margin. This basal accretion caused a major change in the flow field within the wedge and gave rise to vertical shortening and the development of the penetrative subhorizontal transposition foliation. To estimate the amount that vertical ductile shortening contributed to the exhumation of both units finite strain is measured. The tensor average of absolute finite strain yield Sx=1.24, Sy=0.82 and Sz=0.57 implying an average vertical shortening of ca. 43%, which was compensated by volume loss. The finite strain data of the PDS measurements allow to calculate an average volume loss of 41%. A mass balance approximates that most of the solved material stays in the wedge and is precipitated in quartz veins. The average of relative finite strain is Sx=1.65, Sy=0.89 and Sz=0.59 indicating greater vertical shortening in the structurally deeper units. A simple model which integrates velocity gradients along a vertical flow path with a steady-state wedge is used to estimate the contribution of deformation to ductile thinning of the overburden during exhumation. The results show that vertical ductile shortening contributed 15-20% to exhumation. As no large-scale normal faults have been mapped the remaining 80-85% of exhumation must be due to erosion.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This research has focused on the study of the behavior and of the collapse of masonry arch bridges. The latest decades have seen an increasing interest in this structural type, that is still present and in use, despite the passage of time and the variation of the transport means. Several strategies have been developed during the time to simulate the response of this type of structures, although even today there is no generally accepted standard one for assessment of masonry arch bridges. The aim of this thesis is to compare the principal analytical and numerical methods existing in literature on case studies, trying to highlight values and weaknesses. The methods taken in exam are mainly three: i) the Thrust Line Analysis Method; ii) the Mechanism Method; iii) the Finite Element Methods. The Thrust Line Analysis Method and the Mechanism Method are analytical methods and derived from two of the fundamental theorems of the Plastic Analysis, while the Finite Element Method is a numerical method, that uses different strategies of discretization to analyze the structure. Every method is applied to the case study through computer-based representations, that allow a friendly-use application of the principles explained. A particular closed-form approach based on an elasto-plastic material model and developed by some Belgian researchers is also studied. To compare the three methods, two different case study have been analyzed: i) a generic masonry arch bridge with a single span; ii) a real masonry arch bridge, the Clemente Bridge, built on Savio River in Cesena. In the analyses performed, all the models are two-dimensional in order to have results comparable between the different methods taken in exam. The different methods have been compared with each other in terms of collapse load and of hinge positions.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Nanotechnology entails the manufacturing and manipulation of matter at length scales ranging from single atoms to micron-sized objects. The ability to address properties on the biologically-relevant nanometer scale has made nanotechnology attractive for Nanomedicine. This is perceived as a great opportunity in healthcare especially in diagnostics, therapeutics and more in general to develop personalized medicine. Nanomedicine has the potential to enable early detection and prevention, and to improve diagnosis, mass screening, treatment and follow-up of many diseases. From the biological standpoint, nanomaterials match the typical size of naturally occurring functional units or components of living organisms and, for this reason, enable more effective interaction with biological systems. Nanomaterials have the potential to influence the functionality and cell fate in the regeneration of organs and tissues. To this aim, nanotechnology provides an arsenal of techniques for intervening, fabricate, and modulate the environment where cells live and function. Unconventional micro- and nano-fabrication techniques allow patterning biomolecules and biocompatible materials down to the level of a few nanometer feature size. Patterning is not simply a deterministic placement of a material; in a more extended acception it allows a controlled fabrication of structures and gradients of different nature. Gradients are emerging as one of the key factors guiding cell adhesion, proliferation, migration and even differentiation in the case of stem cells. The main goal of this thesis has been to devise a nanotechnology-based strategy and tools to spatially and temporally control biologically-relevant phenomena in-vitro which are important in some fields of medical research.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Over the past 15 years the Italian brewing scene showed interesting changes, especially with regard to the creation of many breweries with an annual production of less than 10,000 hectoliters. The beers produced by microbreweries are very susceptible to attack by spoilage micro-organisms that cause the deterioration of beer quality characteristics. In addition, most of the microbreweries do not practice heat treatments of stabilization and do not carry out quality checks on the product. The high presence of beer spoilage bacteria is an economic problem for the brewing industry because it can damage the brand and it causes high costs of product retrieval. This thesis project was aimed to study the management of the production process in the Italian microbreweries within a production less than 10,000 hl. In particular, the annual production, type of plant, yeast management, process management, cleaning and sanitizing of a representative sample of microbreweries were investigated. Furthermore was made a collection of samples in order to identify, with simple methods, what are spoilage bacteria more present in the Italian craft beers. 21% of the beers analysed were positive at the presence of lactic acid bacteria. These analytical data show the importance of understanding what are the weak points of the production process that cause the development of spoilage bacteria. Finally, the thesis examined the actual production of two microbreweries in order to understand the process management that can promote the growth of spoilage bacteria in beer and production plant. The analysis of the data for the two case studies was helpful to understand what are the critical points where the microorganisms are most frequently in contact with the product. The hygiene practices are crucial to ensure the quality of the finished product, especially in the case of non-pasteurized beer.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Assessment of the integrity of structural components is of great importance for aerospace systems, land and marine transportation, civil infrastructures and other biological and mechanical applications. Guided waves (GWs) based inspections are an attractive mean for structural health monitoring. In this thesis, the study and development of techniques for GW ultrasound signal analysis and compression in the context of non-destructive testing of structures will be presented. In guided wave inspections, it is necessary to address the problem of the dispersion compensation. A signal processing approach based on frequency warping was adopted. Such operator maps the frequencies axis through a function derived by the group velocity of the test material and it is used to remove the dependence on the travelled distance from the acquired signals. Such processing strategy was fruitfully applied for impact location and damage localization tasks in composite and aluminum panels. It has been shown that, basing on this processing tool, low power embedded system for GW structural monitoring can be implemented. Finally, a new procedure based on Compressive Sensing has been developed and applied for data reduction. Such procedure has also a beneficial effect in enhancing the accuracy of structural defects localization. This algorithm uses the convolutive model of the propagation of ultrasonic guided waves which takes advantage of a sparse signal representation in the warped frequency domain. The recovery from the compressed samples is based on an alternating minimization procedure which achieves both an accurate reconstruction of the ultrasonic signal and a precise estimation of waves time of flight. Such information is used to feed hyperbolic or elliptic localization procedures, for accurate impact or damage localization.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Charge transport in conjugated polymers as well as in bulk-heterojunction (BHJ) solar cells made of blends between conjugated polymers, as electron-donors (D), and fullerenes, as electron-acceptors (A), has been investigated. It is shown how charge carrier mobility of a series of anthracene-containing poly(p-phenylene-ethynylene)-alt-poly(p-phenylene-vinylene)s (AnE-PVs) is highly dependent on the lateral chain of the polymers, on a moderate variation of the macromolecular parameters (molecular weight and polydispersity), and on the processing conditions of the films. For the first time, the good ambipolar transport properties of this relevant class of conjugated polymers have been demonstrated, consistent with the high delocalization of both the frontier molecular orbitals. Charge transport is one of the key parameters in the operation of BHJ solar cells and depends both on charge carrier mobility in pristine materials and on the nanoscale morphology of the D/A blend, as proved by the results here reported. A straight correlation between hole mobility in pristine AnE-PVs and the fill factor of the related solar cells has been found. The great impact of charge transport for the performance of BHJ solar cells is clearly demonstrated by the results obtained on BHJ solar cells made of neat-C70, instead of the common soluble fullerene derivatives (PCBM or PC70BM). The investigation of neat-C70 solar cells was motivated by the extremely low cost of non-functionalized fullerenes, compared with that of their soluble derivatives (about one-tenth). For these cells, an improper morphology of the blend leads to a deterioration of charge carrier mobility, which, in turn, increases charge carrier recombination. Thanks to the appropriate choice of the donor component, solar cells made of neat-C70 exhibiting an efficiency of 4.22% have been realized, with an efficiency loss of just 12% with respect to the counterpart made with costly PC70BM.