959 resultados para Degradation pathway
Resumo:
The main clinical features in four patients with IgG1k paraproteinaemia and acquired complement deficiency included xanthomatous skin lesions (in three), panniculitis (in three) and hepatitis (in two). Hypocomplementaemia concerned the early classical pathway components--in particular C1q. Metabolic studies employing 125I-C1q revealed a much faster catabolism of this protein in the four patients than in five normal controls and three patients with cryoglobulinaemia (mean fractional catabolic rates respectively: 23.35%/h; 1.44%/h; 5.84%/h). Various experiments were designed to characterize the mechanism of the hypocomplementaemia: the patients' serum, purified paraprotein, blood cells, bone marrow cells, or xanthomatous skin lesions did not produce significant complement activation or C1q binding. When three of the patients (two with panniculitis and hepatitis) were injected with 123I-C1q, sequential gamma-camera imaging demonstrated rapid accumulation of the radionuclide in the liver, suggesting that complement activation takes place in the liver where it could produce damage.
Resumo:
This article summarizes current concepts of the working memory with regard to its role within emotional coping strategies. In particular, it focuses on the fact that the limited capacity of the working memory to process now-relevant information can be turned into an advantage, when the individual is occupied by dealing with unpleasant emotion. Based on a phenomenon known as dual-task interference (DTI), this emotion can be chased by intense arousal due to clearly identifiable external stressors. Thus, risk perception might be used as a 'DTI inductor' that allows avoidance of unpleasant emotion. Successful mastery of risk adds a highly relevant dopaminergic component to the overall experience. The resulting mechanism of implicit learning may contribute to the development of a behavioural addiction. Besides its putative effects in the development of a behavioural addiction, the use of DTI might be of a more general interest for the clinical practice, especially in the field of psychotherapy. © 2013 S. Karger AG, Basel.
Resumo:
Like many organisms the fungal pathogen Candida albicans senses changes in the environmental CO(2) concentration. This response involves two major proteins: adenylyl cyclase and carbonic anhydrase (CA). Here, we demonstrate that CA expression is tightly controlled by the availability of CO(2) and identify the bZIP transcription factor Rca1p as the first CO(2) regulator of CA expression in yeast. We show that Rca1p upregulates CA expression during contact with mammalian phagocytes and demonstrate that serine 124 is critical for Rca1p signaling, which occurs independently of adenylyl cyclase. ChIP-chip analysis and the identification of Rca1p orthologs in the model yeast Saccharomyces cerevisiae (Cst6p) point to the broad significance of this novel pathway in fungi. By using advanced microscopy we visualize for the first time the impact of CO(2) build-up on gene expression in entire fungal populations with an exceptional level of detail. Our results present the bZIP protein Rca1p as the first fungal regulator of carbonic anhydrase, and reveal the existence of an adenylyl cyclase independent CO(2) sensing pathway in yeast. Rca1p appears to regulate cellular metabolism in response to CO(2) availability in environments as diverse as the phagosome, yeast communities or liquid culture.
Resumo:
1. Studies were performed in normal subjects and in rats to assess the effect of angiotensin converting enzyme (ACE) inhibition on the kallikrein-kinin system. As ACE is identical to kininase II, one of the enzymes physiologically involved in bradykinin degradation, bradykinin may be expected to accumulate during ACE inhibition. 2. A competitive antagonist of bradykinin was used to explore in unanaesthetized rats the contribution of circulating bradykinin to blood pressure control under ACE inhibition. 3. No evidence was found for a role of this vasodilating peptide in the blood pressure lowering effect of acute ACE inhibition. 4. The plasma activity of carboxypeptidase N (= kininase I), another pathway of bradykinin degradation, remained intact during a 1 week course of treatment with an ACE inhibitor in normal subjects. This therefore indicates that bradykinin formed during ACE inhibition can still be metabolized.
Resumo:
In this article, we analyze the ability of the early olfactory system to detect and discriminate different odors by means of information theory measurements applied to olfactory bulb activity images. We have studied the role that the diversity and number of receptor neuron types play in encoding chemical information. Our results show that the olfactory receptors of the biological system are low correlated and present good coverage of the input space. The coding capacity of ensembles of olfactory receptors with the same receptive range is maximized when the receptors cover half of the odor input space - a configuration that corresponds to receptors that are not particularly selective. However, the ensemble's performance slightly increases when mixing uncorrelated receptors of different receptive ranges. Our results confirm that the low correlation between sensors could be more significant than the sensor selectivity for general purpose chemo-sensory systems, whether these are biological or biomimetic.
Resumo:
While developing a high-pressure liquid chromatography assay for cefepime in plasma, we observed significant drug degradation at 20 and 37 degrees C but not at 4 degrees C. This plasma-related degradation persisted after protein removal. This warrants caution regarding cefepime assays for pharmacokinetic and pharmacodynamic studies of cefepime in vitro and in vivo.
Resumo:
The highly pathogenic Old World arenavirus Lassa virus (LASV) and the prototypic arenavirus lymphocytic choriomeningitis virus (LCMV) use α-dystroglycan as a cellular receptor and enter the host cell by an unusual endocytotic pathway independent of clathrin, caveolin, dynamin, and actin. Upon internalization, the viruses are delivered to acidified endosomes in a Rab5-independent manner bypassing classical routes of incoming vesicular trafficking. Here we sought to identify cellular factors involved in the unusual and largely unknown entry pathway of LASV and LCMV. Cell entry of LASV and LCMV required microtubular transport to late endosomes, consistent with the low fusion pH of the viral envelope glycoproteins. Productive infection with recombinant LCMV expressing LASV envelope glycoprotein (rLCMV-LASVGP) and LCMV depended on phosphatidyl inositol 3-kinase (PI3K) as well as lysobisphosphatidic acid (LBPA), an unusual phospholipid that is involved in the formation of intraluminal vesicles (ILV) of the multivesicular body (MVB) of the late endosome. We provide evidence for a role of the endosomal sorting complex required for transport (ESCRT) in LASV and LCMV cell entry, in particular the ESCRT components Hrs, Tsg101, Vps22, and Vps24, as well as the ESCRT-associated ATPase Vps4 involved in fission of ILV. Productive infection with rLCMV-LASVGP and LCMV also critically depended on the ESCRT-associated protein Alix, which is implicated in membrane dynamics of the MVB/late endosomes. Our study identifies crucial cellular factors implicated in Old World arenavirus cell entry and indicates that LASV and LCMV invade the host cell passing via the MVB/late endosome. Our data further suggest that the virus-receptor complexes undergo sorting into ILV of the MVB mediated by the ESCRT, possibly using a pathway that may be linked to the cellular trafficking and degradation of the cellular receptor.
Resumo:
Optic pathway gliomas (OPG) are found in about 15% of patients with neurofibromatosis Type 1 (NF-1). The natural history of OPG is not yet well documented. Treatment in cases with growing tumors is still controversial. Twenty-one patients with NF-1 and OPG, diagnosed over a 20-year period, and followed neuroradiologically and ophthalmologically for at least two years, were reevaluated. The diagnosis of OPG was made at a mean age of 7.1 years (range 0-14.5 years); six children were asymptomatic, 15 were symptomatic. The mean follow-up was 9.0 years (2.0-18.5 (years). In eight initially operated or biopsied patients (three optic nerve and five chiasmal gliomas) tumor regrowth was found in one patient without progression on subsequent follow-up. Improvement of visual acuity occurred in one child after operation of a large suprasellar tumor and deterioration in one patient after biopsy of a chiasmal glioma. The neuroradiological follow-up of the 13 not-operated and not-radiated patients (four optic nerve and nine chiasmal gliomas) was stable in 10, progressive in three, resulting in visual loss in one patient. In 11 children (52%) a second tumor outside the optic pathway was found at a mean age of 4.0 years after the diagnosis of an OPG. Until now they are mostly asymptomatic. Second site tumors were operated in two children because of rapid tumor growth, one child died of a brainstem tumor. OPG are a frequent complication in children with NF-1, appearing within the first decade.(ABSTRACT TRUNCATED AT 250 WORDS)
Resumo:
The phosphatidylinositol 3-kinase-mammalian target of rapamycin (PI3K-mTOR) pathway plays pivotal roles in cell survival, growth, and proliferation downstream of growth factors. Its perturbations are associated with cancer progression, type 2 diabetes, and neurological disorders. To better understand the mechanisms of action and regulation of this pathway, we initiated a large scale yeast two-hybrid screen for 33 components of the PI3K-mTOR pathway. Identification of 67 new interactions was followed by validation by co-affinity purification and exhaustive literature curation of existing information. We provide a nearly complete, functionally annotated interactome of 802 interactions for the PI3K-mTOR pathway. Our screen revealed a predominant place for glycogen synthase kinase-3 (GSK3) A and B and the AMP-activated protein kinase. In particular, we identified the deformed epidermal autoregulatory factor-1 (DEAF1) transcription factor as an interactor and in vitro substrate of GSK3A and GSK3B. Moreover, GSK3 inhibitors increased DEAF1 transcriptional activity on the 5-HT1A serotonin receptor promoter. We propose that DEAF1 may represent a therapeutic target of lithium and other GSK3 inhibitors used in bipolar disease and depression.
Molecular analysis of the bacterial diversity in a specialized consortium for diesel oil degradation
Resumo:
Diesel oil is a compound derived from petroleum, consisting primarily of hydrocarbons. Poor conditions in transportation and storage of this product can contribute significantly to accidental spills causing serious ecological problems in soil and water and affecting the diversity of the microbial environment. The cloning and sequencing of the 16S rRNA gene is one of the molecular techniques that allows estimation and comparison of the microbial diversity in different environmental samples. The aim of this work was to estimate the diversity of microorganisms from the Bacteria domain in a consortium specialized in diesel oil degradation through partial sequencing of the 16S rRNA gene. After the extraction of DNA metagenomics, the material was amplified by PCR reaction using specific oligonucleotide primers for the 16S rRNA gene. The PCR products were cloned into a pGEM-T-Easy vector (Promega), and Escherichia coli was used as the host cell for recombinant DNAs. The partial clone sequencing was obtained using universal oligonucleotide primers from the vector. The genetic library obtained generated 431 clones. All the sequenced clones presented similarity to phylum Proteobacteria, with Gammaproteobacteria the most present group (49.8 % of the clones), followed by Alphaproteobacteira (44.8 %) and Betaproteobacteria (5.4 %). The Pseudomonas genus was the most abundant in the metagenomic library, followed by the Parvibaculum and the Sphingobium genus, respectively. After partial sequencing of the 16S rRNA, the diversity of the bacterial consortium was estimated using DOTUR software. When comparing these sequences to the database from the National Center for Biotechnology Information (NCBI), a strong correlation was found between the data generated by the software used and the data deposited in NCBI.
PPARbeta/delta regulates paneth cell differentiation via controlling the hedgehog signaling pathway.
Resumo:
BACKGROUND & AIMS: All 4 differentiated epithelial cell types found in the intestinal epithelium derive from the intestinal epithelial stem cells present in the crypt unit, in a process whose molecular clues are intensely scrutinized. Peroxisome proliferator-activated receptor beta (PPARbeta) is a nuclear hormone receptor activated by fatty acids and is highly expressed in the digestive tract. However, its function in intestinal epithelium homeostasis is understood poorly. METHODS: To assess the role of PPARbeta in the small intestinal epithelium, we combined various cellular and molecular approaches in wild-type and PPARbeta-mutant mice. RESULTS: We show that the expression of PPARbeta is particularly remarkable at the bottom of the crypt of the small intestine where Paneth cells reside. These cells, which have an important role in the innate immunity, are strikingly affected in PPARbeta-null mice. We then show that Indian hedgehog (Ihh) is a signal sent by mature Paneth cells to their precursors, negatively regulating their differentiation. Importantly, PPARbeta acts on Paneth cell homeostasis by down-regulating the expression of Ihh, an effect that can be mimicked by cyclopamine, a known inhibitor of the hedgehog signaling pathway. CONCLUSIONS: We unraveled the Ihh-dependent regulatory loop that controls mature Paneth cell homeostasis and its modulation by PPARbeta. PPARbeta currently is being assessed as a drug target for metabolic diseases; these results reveal some important clues with respect to the signals controlling epithelial cell fate in the small intestine.
Resumo:
Neuronal nitric oxide synthase (nNOS) and p38MAPK are strongly implicated in excitotoxicity, a mechanism common to many neurodegenerative conditions, but the intermediary mechanism is unclear. NOS1AP is encoded by a gene recently associated with sudden cardiac death, diabetes-associated complications, and schizophrenia (Arking et al., 2006; Becker et al., 2008; Brzustowicz, 2008; Lehtinen et al., 2008). Here we find it interacts with p38MAPK-activating kinase MKK3. Excitotoxic stimulus induces recruitment of NOS1AP to nNOS in rat cortical neuron culture. Excitotoxic activation of p38MAPK and subsequent neuronal death are reduced by competing with the nNOS:NOS1AP interaction and by knockdown with NOS1AP-targeting siRNAs. We designed a cell-permeable peptide that competes for the unique PDZ domain of nNOS that interacts with NOS1AP. This peptide inhibits NMDA-induced recruitment of NOS1AP to nNOS and in vivo in rat, doubles surviving tissue in a severe model of neonatal hypoxia-ischemia, a major cause of neonatal death and pediatric disability. The highly unusual sequence specificity of the nNOS:NOS1AP interaction and involvement in excitotoxic signaling may provide future opportunities for generation of neuroprotectants with high specificity.
Resumo:
Dendritic cells (DCs) can release hundreds of membrane vesicles, called exovesicles, which are able to activate resting DCs and distribute antigen. Here, we examined the role of mature DC-derived exovesicles in innate and adaptive immunity, in particular their capacity to activate epithelial cells. Our analysis of exovesicle contents showed that exovesicles contain major histocompatibility complex-II, CD40, and CD83 molecules in addition to tumor necrosis factor (TNF) receptors, TNFRI and TNFRII, and are important carriers of TNF-alpha. These exovesicles are rapidly internalized by epithelial cells, inducing the release of cytokines and chemokines, but do not transfer an alloantigen-presenting capacity to epithelial cells. Part of this activation appears to involve the TNF-alpha-mediated pathway, highlighting the key role of DC-derived exovesicles, not only in adaptive immunity, but also in innate immunity by triggering innate immune responses and activating neighboring epithelial cells to release cytokines and chemokines, thereby amplifying the magnitude of the innate immune response.