903 resultados para Data-driven knowledge acquisition


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Since its introduction, pulse oximetry has become a conventional clinical measure. Besides being arterial blood oxygen saturation (SpO2) measure, pulse oximeters can be used for other cardiovascular measurements, like heart rate (HR) estimations, derived from its photo plethysmographic (PPG) signals. The temporal coherence of the PPG signals and thereby HR estimates are heavily dependent on its minimal phase variability. A Masimo SET Rad-9TM, Novametrix Oxypleth and a custom designed PPG system were investigated for their relative phase variation. R-R intervals from electro-cardiogram (ECG) were recorded concurrently as reference. PPG signals obtained from the 3 systems were evaluated by comparing their respective beat-to-beat (B-B) intervals with the corresponding R-R estimates during a static test. For their relative B-B comparison to the ECG, Novametrix system differed 0.680.52% (p

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this thesis work we develop a new generative model of social networks belonging to the family of Time Varying Networks. The importance of correctly modelling the mechanisms shaping the growth of a network and the dynamics of the edges activation and inactivation are of central importance in network science. Indeed, by means of generative models that mimic the real-world dynamics of contacts in social networks it is possible to forecast the outcome of an epidemic process, optimize the immunization campaign or optimally spread an information among individuals. This task can now be tackled taking advantage of the recent availability of large-scale, high-quality and time-resolved datasets. This wealth of digital data has allowed to deepen our understanding of the structure and properties of many real-world networks. Moreover, the empirical evidence of a temporal dimension in networks prompted the switch of paradigm from a static representation of graphs to a time varying one. In this work we exploit the Activity-Driven paradigm (a modeling tool belonging to the family of Time-Varying-Networks) to develop a general dynamical model that encodes fundamental mechanism shaping the social networks' topology and its temporal structure: social capital allocation and burstiness. The former accounts for the fact that individuals does not randomly invest their time and social interactions but they rather allocate it toward already known nodes of the network. The latter accounts for the heavy-tailed distributions of the inter-event time in social networks. We then empirically measure the properties of these two mechanisms from seven real-world datasets and develop a data-driven model, analytically solving it. We then check the results against numerical simulations and test our predictions with real-world datasets, finding a good agreement between the two. Moreover, we find and characterize a non-trivial interplay between burstiness and social capital allocation in the parameters phase space. Finally, we present a novel approach to the development of a complete generative model of Time-Varying-Networks. This model is inspired by the Kaufman's adjacent possible theory and is based on a generalized version of the Polya's urn. Remarkably, most of the complex and heterogeneous feature of real-world social networks are naturally reproduced by this dynamical model, together with many high-order topological properties (clustering coefficient, community structure etc.).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The fundamental failure of current approaches to ontology learning is to view it as single pipeline with one or more specific inputs and a single static output. In this paper, we present a novel approach to ontology learning which takes an iterative view of knowledge acquisition for ontologies. Our approach is founded on three open-ended resources: a set of texts, a set of learning patterns and a set of ontological triples, and the system seeks to maintain these in equilibrium. As events occur which disturb this equilibrium, actions are triggered to re-establish a balance between the resources. We present a gold standard based evaluation of the final output of the system, the intermediate output showing the iterative process and a comparison of performance using different seed input. The results are comparable to existing performance in the literature.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we present a new approach to ontology learning. Its basis lies in a dynamic and iterative view of knowledge acquisition for ontologies. The Abraxas approach is founded on three resources, a set of texts, a set of learning patterns and a set of ontological triples, each of which must remain in equilibrium. As events occur which disturb this equilibrium various actions are triggered to re-establish a balance between the resources. Such events include acquisition of a further text from external resources such as the Web or the addition of ontological triples to the ontology. We develop the concept of a knowledge gap between the coverage of an ontology and the corpus of texts as a measure triggering actions. We present an overview of the algorithm and its functionalities.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we describe a novel, extensible visualization system currently under development at Aston University. We introduce modern programming methods, such as the use of data driven programming, design patterns, and the careful definition of interfaces to allow easy extension using plug-ins, to 3D landscape visualization software. We combine this with modern developments in computer graphics, such as vertex and fragment shaders, to create an extremely flexible, extensible real-time near photorealistic visualization system. In this paper we show the design of the system and the main sub-components. We stress the role of modern programming practices and illustrate the benefits these bring to 3D visualization. © 2006 Springer-Verlag Berlin Heidelberg.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Financial prediction has attracted a lot of interest due to the financial implications that the accurate prediction of financial markets can have. A variety of data driven modellingapproaches have been applied but their performance has produced mixed results. In this study we apply both parametric (neural networks with active neurons) and nonparametric (analog complexing) self-organisingmodelling methods for the daily prediction of the exchangerate market. We also propose acombinedapproach where the parametric and nonparametricself-organising methods are combined sequentially, exploiting the advantages of the individual methods with the aim of improving their performance. The combined method is found to produce promising results and to outperform the individual methods when tested with two exchangerates: the American Dollar and the Deutche Mark against the British Pound.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A graphical process control language has been developed as a means of defining process control software. The user configures a block diagram describing the required control system, from a menu of functional blocks, using a graphics software system with graphics terminal. Additions may be made to the menu of functional blocks, to extend the system capability, and a group of blocks may be defined as a composite block. This latter feature provides for segmentation of the overall system diagram and the repeated use of the same group of blocks within the system. The completed diagram is analyzed by a graphics compiler which generates the programs and data structure to realise the run-time software. The run-time software has been designed as a data-driven system which allows for modifications at the run-time level in both parameters and system configuration. Data structures have been specified to ensure efficient execution and minimal storage requirements in the final control software. Machine independence has been accomodated as far as possible using CORAL 66 as the high level language throughout the entire system; the final run-time code being generated by a CORAL 66 compiler appropriate to the target processor.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In analysing manufacturing systems, for either design or operational reasons, failure to account for the potentially significant dynamics could produce invalid results. There are many analysis techniques that can be used, however, simulation is unique in its ability to assess detailed, dynamic behaviour. The use of simulation to analyse manufacturing systems would therefore seem appropriate if not essential. Many simulation software products are available but their ease of use and scope of application vary greatly. This is illustrated at one extreme by simulators which offer rapid but limited application whilst at the other simulation languages which are extremely flexible but tedious to code. Given that a typical manufacturing engineer does not posses in depth programming and simulation skills then the use of simulators over simulation languages would seem a more appropriate choice. Whilst simulators offer ease of use their limited functionality may preclude their use in many applications. The construction of current simulators makes it difficult to amend or extend the functionality of the system to meet new challenges. Some simulators could even become obsolete as users, demand modelling functionality that reflects the latest manufacturing system design and operation concepts. This thesis examines the deficiencies in current simulation tools and considers whether they can be overcome by the application of object-oriented principles. Object-oriented techniques have gained in popularity in recent years and are seen as having the potential to overcome any of the problems traditionally associated with software construction. There are a number of key concepts that are exploited in the work described in this thesis: the use of object-oriented techniques to act as a framework for abstracting engineering concepts into a simulation tool and the ability to reuse and extend object-oriented software. It is argued that current object-oriented simulation tools are deficient and that in designing such tools, object -oriented techniques should be used not just for the creation of individual simulation objects but for the creation of the complete software. This results in the ability to construct an easy to use simulator that is not limited by its initial functionality. The thesis presents the design of an object-oriented data driven simulator which can be freely extended. Discussion and work is focused on discrete parts manufacture. The system developed retains the ease of use typical of data driven simulators. Whilst removing any limitation on its potential range of applications. Reference is given to additions made to the simulator by other developers not involved in the original software development. Particular emphasis is put on the requirements of the manufacturing engineer and the need for Ihe engineer to carrv out dynamic evaluations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A major challenge in text mining for biomedicine is automatically extracting protein-protein interactions from the vast amount of biomedical literature. We have constructed an information extraction system based on the Hidden Vector State (HVS) model for protein-protein interactions. The HVS model can be trained using only lightly annotated data whilst simultaneously retaining sufficient ability to capture the hierarchical structure. When applied in extracting protein-protein interactions, we found that it performed better than other established statistical methods and achieved 61.5% in F-score with balanced recall and precision values. Moreover, the statistical nature of the pure data-driven HVS model makes it intrinsically robust and it can be easily adapted to other domains.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Many tests of financial contagion require a definition of the dates separating calm from crisis periods. We propose to use a battery of break search procedures for individual time series to objectively identify potential break dates in relationships between countries. Applied to the biggest European stock markets and combined with two well established tests for financial contagion, this approach results in break dates which correctly identify the timing of changes in cross-country transmission mechanisms. Application of break search procedures breathes new life into the established contagion tests, allowing for an objective, data-driven timing of crisis periods.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper demonstrates that the conventional approach of using official liberalisation dates as the only existing breakdates could lead to inaccurate conclusions as to the effect of the underlying liberalisation policies. It also proposes an alternative paradigm for obtaining more robust estimates of volatility changes around official liberalisation dates and/or other important market events. By focusing on five East Asian emerging markets, all of which liberalised their financial markets in the late, and by using recent advances in the econometrics of structural change, it shows that (i) the detected breakdates in the volatility of stock market returns can be dramatically different to official liberalisation dates and (ii) the use of official liberalisation dates as breakdates can readily entail inaccurate inference. In contrast, the use of data-driven techniques for the detection of multiple structural changes leads to a richer and inevitably more accurate pattern of volatility evolution emerges in comparison with focussing on official liberalisation dates.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper investigates whether the non-normality typically observed in daily stock-market returns could arise because of the joint existence of breaks and GARCH effects. It proposes a data-driven procedure to credibly identify the number and timing of breaks and applies it on the benchmark stock-market indices of 27 OECD countries. The findings suggest that a substantial element of the observed deviations from normality might indeed be due to the co-existence of breaks and GARCH effects. However, the presence of structural changes is found to be the primary reason for the non-normality and not the GARCH effects. Also, there is still some remaining excess kurtosis that is unlikely to be linked to the specification of the conditional volatility or the presence of breaks. Finally, an interesting sideline result implies that GARCH models have limited capacity in forecasting stock-market volatility.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Failure to detect or account for structural changes in economic modelling can lead to misleading policy inferences, which can be perilous, especially for the more fragile economies of developing countries. Using three potential monetary policy instruments (Money Base, M0, and Reserve Money) for 13 member-states of the CFA Franc zone over the period 1989:11-2002:09, we investigate the magnitude of information extracted by employing data-driven techniques when analyzing breaks in time-series, rather than the simplifying practice of imposing policy implementation dates as break dates. The paper also tests Granger's (1980) aggregation theory and highlights some policy implications of the results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This article focuses on the deviations from normality of stock returns before and after a financial liberalisation reform, and shows the extent to which inference based on statistical measures of stock market efficiency can be affected by not controlling for breaks. Drawing from recent advances in the econometrics of structural change, it compares the distribution of the returns of five East Asian emerging markets when breaks in the mean and variance are either (i) imposed using certain official liberalisation dates or (ii) detected non-parametrically using a data-driven procedure. The results suggest that measuring deviations from normality of stock returns with no provision for potentially existing breaks incorporates substantial bias. This is likely to severely affect any inference based on the corresponding descriptive or test statistics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The realization of the Semantic Web is constrained by a knowledge acquisition bottleneck, i.e. the problem of how to add RDF mark-up to the millions of ordinary web pages that already exist. Information Extraction (IE) has been proposed as a solution to the annotation bottleneck. In the task based evaluation reported here, we compared the performance of users without access to annotation, users working with annotations which had been produced from manually constructed knowledge bases, and users working with annotations augmented using IE. We looked at retrieval performance, overlap between retrieved items and the two sets of annotations, and usage of annotation options. Automatically generated annotations were found to add value to the browsing experience in the scenario investigated. Copyright 2005 ACM.