950 resultados para DYNAMIC FOREST DATA STRUCTURES
Resumo:
Este trabalho teve como objetivo utilizar a lógica fuzzy para geração de zonas de manejo, na área agrária e ambiental. Uma das aplicações consistiu da utilização do método fuzzy C-means, para geração de zonas de manejo para a cultura do mamoeiro, em um plantio comercial localizado em São Mateus-ES, com base em determinações realizadas através de amostragens e análises químicas do solo, considerando os atributos: P, K, Ca, Mg, e Saturação por bases (V%). Aplicou-se também a lógica fuzzy para desenvolver e executar um procedimento para dar suporte ao processo de tomada de decisões, envolvendo análise multicritério, gerando mapas de adequabilidade ao uso público e a conservação no Parque Estadual da Cachoeira da Fumaça, no município de Alegre-ES, considerando como fatores a localização da cachoeira, o uso do solo, os recursos hídricos, as trilhas, os locais de acessos, a infraestrutura, a declividade da área, e utilizando a abordagem de Sistema de Informações Geográficas para análise e combinação da base de dados. A partir das zonas de manejo geradas, foi possível explicar a variabilidade espacial dos atributos do solo na área de estudo da cultura do mamoeiro, e observa-se que as similaridades entre as zonas geradas, a partir de diferentes atributos, mostrou variação, mas observa-se uma influência nos dados, principalmente pelos atributos P e V. A partir do zoneamento da Unidade de Conservação foi possível selecionar áreas mais aptas ao ecoturismo, sendo encontradas próximas da cachoeira, trilhas em zonas de reflorestamento e de Mata Atlântica. Quanto às áreas propensas a medidas de conservação localizam-se próximas à cachoeira e às estruturas do parque, devido à maior pressão antrópica exercida nesses locais. Outras áreas que se destacaram, foram as áreas de pastagem, por estarem em estágio de regeneração natural. Os resultados indicam áreas de mesmo potencial de produção do mamoeiro, ou quando aplicado à área ambiental, áreas que devem receber maior cuidado para utilização por ecoturismo e para preservação e servem de base para a tomada de decisões, visando melhor aproveitamento da área.
Implementação de formulações do método dos elementos de contorno para associação de placas no espaço
Resumo:
Tese (doutorado)—Universidade de Brasília, Faculdade de Tecnologia, Departamento de Engenharia Mecânica, 2016.
Resumo:
This paper deals with the establishment of a characterization methodology of electric power profiles of medium voltage (MV) consumers. The characterization is supported on the data base knowledge discovery process (KDD). Data Mining techniques are used with the purpose of obtaining typical load profiles of MV customers and specific knowledge of their customers’ consumption habits. In order to form the different customers’ classes and to find a set of representative consumption patterns, a hierarchical clustering algorithm and a clustering ensemble combination approach (WEACS) are used. Taking into account the typical consumption profile of the class to which the customers belong, new tariff options were defined and new energy coefficients prices were proposed. Finally, and with the results obtained, the consequences that these will have in the interaction between customer and electric power suppliers are analyzed.
Resumo:
This paper presents an artificial neural network applied to the forecasting of electricity market prices, with the special feature of being dynamic. The dynamism is verified at two different levels. The first level is characterized as a re-training of the network in every iteration, so that the artificial neural network can able to consider the most recent data at all times, and constantly adapt itself to the most recent happenings. The second level considers the adaptation of the neural network’s execution time depending on the circumstances of its use. The execution time adaptation is performed through the automatic adjustment of the amount of data considered for training the network. This is an advantageous and indispensable feature for this neural network’s integration in ALBidS (Adaptive Learning strategic Bidding System), a multi-agent system that has the purpose of providing decision support to the market negotiating players of MASCEM (Multi-Agent Simulator of Competitive Electricity Markets).
Resumo:
OBJECTIVE: To assess the lag structure between air pollution exposure and elderly cardiovascular diseases hospital admissions, by gender. METHODS: Health data of people aged 64 years or older was stratified by gender in São Paulo city, Southeastern Brazil, from 1996 to 2001. Daily levels of air pollutants (CO, PM10, O3, NO2, and SO2) , minimum temperature, and relative humidity were also analyzed. It were fitted generalized additive Poisson regressions and used constrained distributed lag models adjusted for long time trend, weekdays, weather and holidays to assess the lagged effects of air pollutants on hospital admissions up to 20 days after exposure. RESULTS: Interquartile range increases in PM10 (26.21 mug/m³) and SO2 (10.73 mug/m³) were associated with 3.17% (95% CI: 2.09-4.25) increase in congestive heart failure and 0.89% (95% CI: 0.18-1.61) increase in total cardiovascular diseases at lag 0, respectively. Effects were higher among female group for most of the analyzed outcomes. Effects of air pollutants for different outcomes and gender groups were predominately acute and some "harvesting" were found. CONLUSIONS: The results show that cardiovascular diseases in São Paulo are strongly affected by air pollution.
Resumo:
We present measurements and numerical simulation of a-Si:H p-i-n detectors with a wide range of intrinsic layer thickness between 2 and 10 pm. Such a large active layer thickness is required in applications like elementary particle detectors or X-ray detectors. For large thickness and depending on the applied bias, we observe a sharp peak in the spectral response in the red region near 700 nm. Simulation results obtained with the program ASCA are in agreement with the measurement and permit the explanation of the experimental data. In thick samples holes recombine or are trapped before reaching the contacts, and the conduction mechanism is fully electron dominated. As a consequence, the peak position in the spectral response is located near the optical band gap of the a-Si:H i-layer. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Dissertação para obtenção do grau de Mestre em Engenharia Informática
Resumo:
A navegação de veículos autónomos em ambientes não estruturados continua a ser um problema em aberto. A complexidade do mundo real ainda é um desafio. A difícil caracterização do relevo irregular, dos objectos dinâmicos e pouco distintos(e a inexistência de referências de localização) tem sido alvo de estudo e do desenvolvimento de vários métodos que permitam de uma forma eficiente, e em tempo real, modelizar o espaço tridimensional. O trabalho realizado ao longo desta dissertação insere-se na estratégia do Laboratório de Sistemas Autónomos (LSA) na pesquisa e desenvolvimento de sistemas sensoriais que possibilitem o aumento da capacidade de percepção das plataformas robóticas. O desenvolvimento de um sistema de modelização tridimensional visa acrescentar aos projectos LINCE (Land INtelligent Cooperative Explorer) e TIGRE (Terrestrial Intelligent General proposed Robot Explorer) maior autonomia e capacidade de exploração e mapeamento. Apresentamos alguns sensores utilizados para a aquisição de modelos tridimensionais, bem como alguns dos métodos mais utilizados para o processo de mapeamento, e a sua aplicação em plataformas robóticas. Ao longo desta dissertação são apresentadas e validadas técnicas que permitem a obtenção de modelos tridimensionais. É abordado o problema de analisar a cor e geometria dos objectos, e da criação de modelos realistas que os representam. Desenvolvemos um sistema que nos permite a obtenção de dados volumétricos tridimensionais, a partir de múltiplas leituras de um Laser Range Finder bidimensional de médio alcance. Aos conjuntos de dados resultantes associamos numa nuvem de pontos coerente e referenciada. Foram desenvolvidas e implementadas técnicas de segmentação que permitem inspeccionar uma nuvem de pontos e classifica-la quanto às suas características geométricas, bem como ao tipo de estruturas que representem. São apresentadas algumas técnicas para a criação de Mapas de Elevação Digital, tendo sido desenvolvida um novo método que tira partido da segmentação efectuada
Resumo:
The tongue is the most important and dynamic articulator for speech formation, because of its anatomic aspects (particularly, the large volume of this muscular organ comparatively to the surrounding organs of the vocal tract) and also due to the wide range of movements and flexibility that are involved. In speech communication research, a variety of techniques have been used for measuring the three-dimensional vocal tract shapes. More recently, magnetic resonance imaging (MRI) becomes common; mainly, because this technique allows the collection of a set of static and dynamic images that can represent the entire vocal tract along any orientation. Over the years, different anatomical organs of the vocal tract have been modelled; namely, 2D and 3D tongue models, using parametric or statistical modelling procedures. Our aims are to present and describe some 3D reconstructed models from MRI data, for one subject uttering sustained articulations of some typical Portuguese sounds. Thus, we present a 3D database of the tongue obtained by stack combinations with the subject articulating Portuguese vowels. This 3D knowledge of the speech organs could be very important; especially, for clinical purposes (for example, for the assessment of articulatory impairments followed by tongue surgery in speech rehabilitation), and also for a better understanding of acoustic theory in speech formation.
Resumo:
This paper analyses earthquake data in the perspective of dynamical systems and its Pseudo Phase Plane representation. The seismic data is collected from the Bulletin of the International Seismological Centre. The geological events are characterised by their magnitude and geographical location and described by means of time series of sequences of Dirac impulses. Fifty groups of data series are considered, according to the Flinn-Engdahl seismic regions of Earth. For each region, Pearson’s correlation coefficient is used to find the optimal time delay for reconstructing the Pseudo Phase Plane. The Pseudo Phase Plane plots are then analysed and characterised.
Resumo:
Wireless Sensor Networks (WSNs) are highly distributed systems in which resource allocation (bandwidth, memory) must be performed efficiently to provide a minimum acceptable Quality of Service (QoS) to the regions where critical events occur. In fact, if resources are statically assigned independently from the location and instant of the events, these resources will definitely be misused. In other words, it is more efficient to dynamically grant more resources to sensor nodes affected by critical events, thus providing better network resource management and reducing endto- end delays of event notification and tracking. In this paper, we discuss the use of a WSN management architecture based on the active network management paradigm to provide the real-time tracking and reporting of dynamic events while ensuring efficient resource utilization. The active network management paradigm allows packets to transport not only data, but also program scripts that will be executed in the nodes to dynamically modify the operation of the network. This presumes the use of a runtime execution environment (middleware) in each node to interpret the script. We consider hierarchical (e.g. cluster-tree, two-tiered architecture) WSN topologies since they have been used to improve the timing performance of WSNs as they support deterministic medium access control protocols.
Resumo:
Dissertação apresentada para a obtenção do grau de Doutor em Engenharia Química, especialidade Engenharia da Reacção Química, pela Universidade Nova de Lisboa, Faculdade de Ciências e Tecnologia
Resumo:
Dissertation presented at the Faculty of Science and Technology of the New University of Lisbon in fulfillment of the requirements for the Masters degree in Electrical Engineering and Computers
Resumo:
Data analytic applications are characterized by large data sets that are subject to a series of processing phases. Some of these phases are executed sequentially but others can be executed concurrently or in parallel on clusters, grids or clouds. The MapReduce programming model has been applied to process large data sets in cluster and cloud environments. For developing an application using MapReduce there is a need to install/configure/access specific frameworks such as Apache Hadoop or Elastic MapReduce in Amazon Cloud. It would be desirable to provide more flexibility in adjusting such configurations according to the application characteristics. Furthermore the composition of the multiple phases of a data analytic application requires the specification of all the phases and their orchestration. The original MapReduce model and environment lacks flexible support for such configuration and composition. Recognizing that scientific workflows have been successfully applied to modeling complex applications, this paper describes our experiments on implementing MapReduce as subworkflows in the AWARD framework (Autonomic Workflow Activities Reconfigurable and Dynamic). A text mining data analytic application is modeled as a complex workflow with multiple phases, where individual workflow nodes support MapReduce computations. As in typical MapReduce environments, the end user only needs to define the application algorithms for input data processing and for the map and reduce functions. In the paper we present experimental results when using the AWARD framework to execute MapReduce workflows deployed over multiple Amazon EC2 (Elastic Compute Cloud) instances.