929 resultados para Coupled Oscillators System
Resumo:
Objective. In 2003, the State of Texas instituted the Driver Responsibility Program (TDRP), a program consisting of a driving infraction point system coupled with a series of graded fines and annual surcharges for specific traffic violations such as driving while intoxicated (DWI). Approximately half of the revenues generated are earmarked to be disbursed to the state's trauma system to cover uncompensated trauma care costs. This study examined initial program implementation, the impact of trauma system funding, and initial impact on impaired driving knowledge, attitudes and behaviors. A model for targeted media campaigns to improve the program's deterrence effects was developed. ^ Methods. Data from two independent driver survey samples (conducted in 1999 and 2005), department of public safety records, state health department data and a state auditor's report were used to evaluate the program's initial implementation, impact and outcome with respect to drivers' impaired driving knowledge, attitudes and behavior (based on constructs of social cognitive theory) and hospital uncompensated trauma care funding. Survey results were used to develop a regression model of high risk drivers who should be targeted to improve program outcome with respect to deterring impaired driving. ^ Results. Low driver compliance with fee payment (28%) and program implementation problems were associated with lower surcharge revenues in the first two years ($59.5 million versus $525 million predicted). Program revenue distribution to trauma hospitals was associated with a 16% increase in designated trauma centers. Survey data demonstrated that only 28% of drivers are aware of the TDRP and that there has been no initial impact on impaired driving behavior. Logistical regression modeling suggested that target media campaigns highlighting the likelihood of DWI detection by law enforcement and the increased surcharges associated with the TDRP are required to deter impaired driving. ^ Conclusions. Although the TDRP raised nearly $60 million in surcharge revenue for the Texas trauma system over the first two years, this study did not find evidence of a change in impaired driving knowledge, attitudes or behaviors from 1999 to 2005. Further research is required to measure whether the program is associated with decreased alcohol-related traffic fatalities. ^
Resumo:
Inductively coupled plasma mass spectrometry (ICP-MS) is a suitable tool for multi-element analysis at low concentration levels. Rare earth element (REE) determinations in standard reference materials and small volumes of molten ice core samples from Antarctica have been performed with an ICP-time of flight-MS (ICP-TOF-MS) system. Recovery rates for REE in e.g. SPS-SW1 amounted to not, vert, similar ~103%, and the relative standard deviations were 3.4% for replicate analysis at REE concentrations in the lower ng/l range. Analyses of REE concentrations in Antarctic ice core samples showed that the ICP-TOF-MS technique meets the demands of restricted sample mass. The data obtained are in good agreement with ICP-Quadrupole-MS (ICP-Q-MS) and ICP-Sector Field-MS (ICP-SF-MS) results. The ICP-TOF-MS system determines accurately and precisely REE concentrations exceeding 5 ng/l while between 0.5 and 5 ng/l accuracy and precision are element dependent.
Resumo:
Detailed comparison of mineralogy, and major and trace geochemistry are presented for the modern Lau Basin spreading centers, the Sites 834-839 lavas, the modern Tonga-Kermadec arc volcanics, the northern Tongan boninites, and the Lau Ridge volcanics. The data clearly confirm the variations from near normal mid-ocean-ridge basalt (N-MORB) chemistries (e.g., Site 834, Central Lau Spreading Center) to strongly arc-like (e.g., Site 839, Valu Fa), the latter closely comparable to the modern arc volcanoes. Sites 835 and 836 and the East Lau Spreading Center represent transitional chemistries. Bulk compositions range from andesitic to basaltic, but lavas from Sites 834 and 836 and the Central Lau Spreading Center extend toward more silica-undersaturated compositions. The Valu Fa and modern Tonga-Kermadec arc lavas, in contrast, are dominated by basaltic andesites. The phenocryst and groundmass mineralogies show the strong arc-like affinities of the Site 839 lavas, which are also characterized by the existence of very magnesian olivines (up to Fo90-92) and Cr-rich spinels in Units 3 and 6, and highly anorthitic plagioclases in Units 2 and 9. The regional patterns of mineralogical and geochemical variations are interpreted in terms of two competing processes affecting the inferred magma sources: (1) mantle depletion processes, caused by previous melt extractions linked to backarc magmatism, and (2) enrichment in large-ion-lithophile elements, caused by a subduction contribution. A general trend of increasing depletion is inferred both eastward across the Lau Basin toward the modern arc, and northward along the Tongan (and Kermadec) Arc. Numerical modeling suggests that multistage magma extraction can explain the low abundances (relative to N-MORB) of elements such as Nb, Ta, and Ti, known to be characteristic of island arc magmas. It is further suggested that a subduction jump following prolonged slab rollback could account for the initiation of the Lau Basin opening, plausibly allowing a later influx of new mantle, as required by the recognition of a two-stage opening of the Lau Basin.
Resumo:
The magnitude and the chronology of anthropogenic impregnation by Hg and other trace metals of environmental concern (V, Cr, Ni, Cu, Zn, Ag, Cd and Pb, including its stable isotopes) in the sediments are determined at the DYFAMED station, a site in the Ligurian Sea (Northwestern Mediterranean) chosen for its supposed open-sea characteristics. The DYFAMED site (VD) is located on the right levee of the Var Canyon turbidite system, at the end of the Middle Valley. In order to trace the influence of the gravity current coming from the canyon on trace metal distribution in the sediment, we studied an additional sediment core (VA) from a terrace of the Var Canyon, and material collected in sediment traps at the both sites at 20 m above sea bottom. The patterns of Hg and other trace element distribution profiles are interpreted using stable Pb isotope ratios as proxies for its sources, taking into account the sedimentary context (turbidites, redox conditions, and sedimentation rates). Major element distributions, coupled with the stratigraphic examination of the sediment cores point out the high heterogeneity of the deposits at VA, and major turbiditic events at both sites. At the DYFAMED site, we observed direct anthropogenic influence in the upper sediment layer (<2 cm), while on the Var Canyon site (VA), the anthropization concerns the whole sedimentary column sampled (19 cm). Turbiditic events superimpose their specific signature on trace metal distributions. According to the 210Pbxs-derived sedimentation rate at the DYFAMED site (0.4 mm yr-1), the Hg-enriched layer of the top core corresponds to the sediment accumulation of the last 50 years, which is the period of the highest increase in Hg deposition on a global scale. With the hypothesis of the absence of significant post-depositional redistribution of Hg, the Hg/C-org ratio changes between the surface and below are used to estimate the anthropogenic contribution to the Hg flux accumulated in the sediment. The Hg enrichment, from pre-industrial to the present time is calculated to be around 60%, consistent with estimations of global Hg models. However, based on the chemical composition of the trapped material collected in sediment traps, we calculated that epibenthic mobilization of Hg would reach 73%. Conversely, the Cd/C-org ratio decreases in the upper 5 cm, which may reflect the recent decrease of atmospheric Cd inputs or losses due to diagenetic processes.
Resumo:
Orbital forcing does not only exert direct insolation effects, but also alters climate indirectly through feedback mechanisms that modify atmosphere and ocean dynamics and meridional heat and moisture transfers. We investigate the regional effects of these changes by detailed analysis of atmosphere and ocean circulation and heat transports in a coupled atmosphere-ocean-sea ice-biosphere general circulation model (ECHAM5/JSBACH/MPI-OM). We perform long term quasi equilibrium simulations under pre-industrial, mid-Holocene (6000 years before present - yBP), and Eemian (125 000 yBP) orbital boundary conditions. Compared to pre-industrial climate, Eemian and Holocene temperatures show generally warmer conditions at higher and cooler conditions at lower latitudes. Changes in sea-ice cover, ocean heat transports, and atmospheric circulation patterns lead to pronounced regional heterogeneity. Over Europe, the warming is most pronounced over the north-eastern part in accordance with recent reconstructions for the Holocene. We attribute this warming to enhanced ocean circulation in the Nordic Seas and enhanced ocean-atmosphere heat flux over the Barents Shelf in conduction with retreat of sea ice and intensified winter storm tracks over northern Europe.
Resumo:
B/Ca ratios in Cibicides mundulus and Cibicides wuellerstorfi have been shown to correlate with the degree of calcite saturation in seawater (D[CO32-]). In the South Pacific, a region of high importance in the global carbon cycle, these species are not continuously present in down-core records. Small numbers of epibenthic foraminifera in samples present an additional challenge, which can be overcome by using laser ablation-inductively coupled-mass spectrometry (LA-ICP-MS). We present a laser ablation based core-top calibration for Cibicides cf. wuellerstorfi, a C. wuellerstorfi morphotype that is abundant in the South Pacific and extend the existing global core top calibration for C. mundulus and C. wuellerstorfi to this region. B/Ca in C. cf. wuellerstorfi are linearly correlated with D[CO32-] and possibly display a higher sensitivity to calcite saturation changes than C. wuellerstorfi. Trace element profiles through C. wuellerstorfi and C. mundulus reveal an intra-shell B/Ca variation of ±36% around the mean shell value. Mg/Ca and B/Ca display opposite trends along the shell. Both phenomena likely result from ontogenetic effects. Intra-shell variability equals intra-sample variability, mean sample B/Ca values can thus be reliably calculated from averaged spot results of single specimen. In the global B/Ca-D[CO32-] range, we observe an inverse relationship between water mass age and D[CO32-].
Resumo:
The Southern Hemisphere Westerly Winds (SWW) have been suggested to exert a critical influence on global climate through wind-driven upwelling of deep water in the Southern Ocean and the potentially resulting atmospheric CO2 variations. The investigation of the temporal and spatial evolution of the SWW along with forcings and feedbacks remains a significant challenge in climate research. In this study, the evolution of the SWW under orbital forcing from the early Holocene (9 kyr BP) to pre-industrial modern times is examined with transient experiments using the comprehensive coupled global climate model CCSM3. Analyses of the model results suggest that the annual and seasonal mean SWW were subject to an overall strengthening and poleward shifting trend during the course of the early-to-late Holocene under the influence of orbital forcing, except for the austral spring season, where the SWW exhibited an opposite trend of shifting towards the equator.