968 resultados para Coal mine waste
Resumo:
An investigation into the seismic behaviour of municipal solid waste (MSW) landfills by dynamic centrifuge testing was undertaken. This paper presents physical modelling of MSW landfills for dynamic centrifuge testing, with regard to the following research areas: 1. amplification characteristics of municipal solid waste; 2. tension induced in geomembranes placed on landfill slopes due to earthquake loading; 3. damage to landfill liners due to liquefaction of foundation soil. A model waste, that has engineering properties similar to MSW, is presented. A model geomembrane that can be used in centrifuge tests is also presented. Results of dynamic centrifuge tests with the model geomembrane showed that an earthquake loading induces additional permanent tension (∼25%) in the geomembrane. © 2006 Taylor & Francis Group.
Resumo:
Biomicrocapsules mean microscopic living organisms which carry important nutrients, very essential for the growth and development of aquatic organisms as well as other animals. Among these biomicrocapsules, Chlorella ellipsoidea, an important green microalga (Chlorophyceae) which contains 40-45% crude protein, 12-16% crude lipid, 14-15% minerals, colour pigments, vitamins and carotene. The microalga, C. ellipsoidea was cultured in four different dilutions of supernatant of digested sugar mill effluent (DSME) i.e. 25, 50, 75 and 100% DSME and Bold basal medium (BBM) as control in laboratory condition. Maximum cell growth and chlorophyll a content of C. ellipsoidea were obtained on l0th day of culture in supernatant of 50% diluted DSME followed by those of this biomicrocapsule grown in BBM, and 75, 25 and 100% DSME at stationary phase. Cell number had highly (p<0.01) direct correlation with chlorophyll a (r = 0.889) of C. ellipsoidea, and optical density (r = 0.926) of media. Chlorophyll a was also highly (p<0.01) and directly correlated with optical density (r= 0.877) of media. The specific growth rates (µ/day) of cell and chlorophyll a of C. ellipsoidea grown in supernatant of 50% DSME were significantly (p<0.01) varied from those of C. ellipsoidea cultured in BBM followed by other DSME. Total biomass of C. ellipsoidea cultured in supernatant of 50% DSME was found significantly (p<0.01) higher than that of this microalga cultured in BBM, and supernatant of 25, 75 and 100% DSME. Similar trend was also observed in the case of optical density. The physico-chemical properties of media were varied with the growth of cell of this microalga. It was recorded that cell number, chlorophyll a of biomicrocapsule, and optical density of media were highly (p<0.01) and directly correlated with pH, hardness and alkalinity, and inversely correlated with nitrate-N. Crude protein and crude lipid of C. ellipsoidea grown in supernatant of 50% DSME were significantly (p<0.01) higher than those of C. ellipsoidea cultured in other DSME and BBM. Due to best growth performance exhibited by this microalga grown in supernatant of 50% DSME, it may be used to grow in supernatant of 50% DSME to get more essential nutrients than that cultured in supernatant of other DSME media.
Resumo:
A manual method of filleting of different varieties of fishes yields of skin-on and skinless fillets that can be obtained from them, levels of recovery of picked meat from the filleting waste and the utilization of the latter for the production of fish meal have been reported in this communication. The compositions of meal thus prepared are also given.
Resumo:
Commercial frog waste samples have been converted into meals by cooking at 0.7 kg/sq. cm for 30 min, draining off the stick water and drying the press cake either in the sun, tunnel dryer under controlled conditions or hot air oven. Yield of the meal varied between 18.6 to 21.5% of the fresh frog waste. Chemical analyses of the meals have shown that the meals prepared from frog waste conform to standards prescribed for fish meal and livestock feed and can therefore be used for supplementation of poultry/animal feed.
Resumo:
process is described for the preparation of chitosan from prawn waste. The process involves extraction of protein using 0.5% sodium hydroxide solution, bleaching the protein free mass with bleach liquor containing 0.3-0.5% available chlorine followed by demineralisation with 1.25 N hydrochloric acid in the cold and deacetylation using 1:1 (w/w) sodium hydroxide solution at 100°C for 2 hours.
Resumo:
A method has been described for the preparation of protein extract from prawn waste. The process consists of extracting the protein from minced fresh prawn head and shell waste by treatment with mild alkali and neutralisation and concentration of the filtrate into a semisolid consistency. The yield of the final product is about 20% of the weight of fresh prawn waste.
Resumo:
Large quantities of self-brine accumulating in curing tanks during the process of commercial fish salting is mostly wasted at present. This liquor exuded from the fish during the process of salting contains considerable amounts of soluble proteins and minerals. Due to the presence of organic matter the self-brine quickly putrefies causing nauseating smell. This renders the whole surroundings insanitary and often leads to health hazards to neighboring localities. Any economic method of utilising this waste brine and converting it into some useful product will be a tangible help to the fish curing industry. Hence, a method is given for converting this waste self-brine into a cheap and efficient fertilizer.
Resumo:
A process is described for the utilisation of mussel shell wastes by their conversion into lime, which may be used for white washing and plastering.
Resumo:
Fermented vegetable and kitchen wastes are available as feeds for not only zoea but also mysis and up to certain points in the postlarval stages of sugpo, Penaeus monodon. It is recommended that the hatchery use fermented wastes as larval feed for P.monodon when diatoms or brine shrimp nauplii are lacking or in short supply. Among three stages namely, zoea, mysis and postlarva, the survival rate during postlarva particularly after P SUB-4 was quite low. The problems encountered are as follows: (a) how to prevent fermented particles from lumping, (b) how to prevent them from easily sinking to the bottom, and, (c) how to prevent bacteria and fungi, particularly Lagenidium sp blooming.
Resumo:
The squid waste which includes head, tentacles, viscera, fin, skin and pen amounts to 52% of the whole weight and is discarded at present. A method has been worked out for the conversion of squ.id waste into meal. The waste is boiled in salt solution (2%)/salt (2%) and alumn (0.5%) solution/and water for two minutes, drained and dried. All the dried samples including the control (dried without blanching) were analysed for physical and biochemical changes. Blanching reduced the yield but the product could be dried in a shorter period. The volatile bases were reduced significantly and the colour was improved. Blanching made pulverisation of the dried product easy. Pulverisation before drying yielded a granular product.
Resumo:
Protein powders were prepared from processing waste of prawns either by mechanically squeezing the shell and freeze drying the resultant aqueous extract or by treating the shell with 0.5% sodium hydroxide, filtering it and freeze drying the filtrate. Comparative studies on the proximate composition, amino acid profile, consumer acceptability and nutritional quality of the protein powders showed that the product prepared by freeze drying of the press liquor obtained by passing the waste through a hand operated expeller is better in all aspects studied than the product prepared by mild alkali extraction.