997 resultados para Clones de álamos
Resumo:
Background: A major goal in the post-genomic era is to identify and characterise disease susceptibility genes and to apply this knowledge to disease prevention and treatment. Rodents and humans have remarkably similar genomes and share closely related biochemical, physiological and pathological pathways. In this work we utilised the latest information on the mouse transcriptome as revealed by the RIKEN FANTOM2 project to identify novel human disease-related candidate genes. We define a new term patholog to mean a homolog of a human disease-related gene encoding a product ( transcript, anti-sense or protein) potentially relevant to disease. Rather than just focus on Mendelian inheritance, we applied the analysis to all potential pathologs regardless of their inheritance pattern. Results: Bioinformatic analysis and human curation of 60,770 RIKEN full-length mouse cDNA clones produced 2,578 sequences that showed similarity ( 70 - 85% identity) to known human-disease genes. Using a newly developed biological information extraction and annotation tool ( FACTS) in parallel with human expert analysis of 17,051 MEDLINE scientific abstracts we identified 182 novel potential pathologs. Of these, 36 were identified by computational tools only, 49 by human expert analysis only and 97 by both methods. These pathologs were related to neoplastic ( 53%), hereditary ( 24%), immunological ( 5%), cardio-vascular (4%), or other (14%), disorders. Conclusions: Large scale genome projects continue to produce a vast amount of data with potential application to the study of human disease. For this potential to be realised we need intelligent strategies for data categorisation and the ability to link sequence data with relevant literature. This paper demonstrates the power of combining human expert annotation with FACTS, a newly developed bioinformatics tool, to identify novel pathologs from within large-scale mouse transcript datasets.
Resumo:
N-Acetylglucosamine (GlcNAc) is the major immunoepitope of group A streptococcal cell wall carbohydrates. Antistreptococcal antibodies cross-reactive with anti-GlcNAc and laminin are present in sera of patients with rheumatic fever. The cross-reactivity of these antibodies with human heart valvular endothelium and the underlying basement membrane has been suggested to be a possible cause of immune-mediated valve lesion. Mannose-binding lectin (MBL) encoded by the MBL2 gene, a soluble pathogen recognition receptor, has high affinity for GlcNAc. We postulated that mutations in exon 1 of the MBL2 gene associated with a deficient serum level of MBL may contribute to chronic severe aortic regurgitation (AR) of rheumatic etiology. We studied 90 patients with severe chronic AR of rheumatic etiology and 281 healthy controls (HC) for the variants of the MBL2 gene at codons 52, 54, and 57 by using a PCR-restriction fragment length polymorphism-based method. We observed a significant difference in the prevalence of defective MBL2 alleles between patients with chronic severe AR and HC. Sixteen percent of patients with chronic severe AR were homozygotes or compound heterozygotes for defective MBL alleles in contrast to 5% for HC (P = 0.0022; odds ratio, 3.5 [ 95% confidence interval, 1.6 to 7.7]). No association was detected with the variant of the MASP2 gene. Our study suggests that MBL deficiency may contribute to the development of chronic severe AR of rheumatic etiology.
Resumo:
Chinese Hamster Ovary (CHO) cells are widely used for the large scale production of recombinant biopharmaceuticals. Growth of the CHO-K1 cell line has been demonstrated in serum-free medium containing insulin, transferrin and selenium. In an attempt to get autocrine growth in protein-free medium, DNA coding for insulin and transferrin production was transfected into CHO-K1 cells. Transferrin was expressed well, with clones secreting approximately 1000 ng/10(6)cells/24h. Insulin was poorly expressed, with rates peaking at 5 ng/10(6)cells/24h. Characterisation of the secreted insulin indicated that the CHO cells were incompletely processing the insulin molecule. Site-directed mutagenesis was used to introduce a furin (prohormone converting enzyme) recognition sequence into the insulin molecule, allowing the production of active insulin. However, the levels were still too low to support autocrine growth. Further investigations revealed insulin degrading activity (presumably due to the presence of insulin degrading enzymes) in the cytoplasm of CHO cells. To overcome these problems insulin-like growth factor I (instead of insulin) was transfected into the cells. IGF-1 was completely processed and expressed at rates greater than 500 ng/10(6)cells/24h. In this paper we report autonomous growth of the transfected CHO-K1 cell line expressing transferrin and IGF-1 in protein-free medium without the addition of exogenous growth factors. Growth rates and final cell densities of these cells were identical to that of the parent cell line CHO-K1 growing in insulin, transferrin, and selenium supplemented serum-free media.
Resumo:
Purpose: Animal models of diseases are extremely important in the study of the physiopathogenesis of human diseases and for testing novel therapeutic interventions. The present study aimed to develop an animal model that simulates human allergic conjunctivitis and to study how allergic response may be influenced by the allergen dose used for immunization and by genetic factors. Methods: Sixty C57Bl/6 mice and 60 BALB/c mice were immunized with placebo, or 5 mu g or 500 mu g of allergen derived from Dermatophagoides pteronyssinus. After ocular challenge, the mice were examined in order to clinically verify the occurrence or not of conjunctivitis. Material obtained from animals was used for total and specific IgE and IgG1 dosage, for assays of Der p-specific lymphocyte proliferation and supernatant cytokine dosage, and for histopathological evaluation of conjunctiva. Results: We developed a murine model of allergic conjunctivitis induced by D. pteronyssinus. The model is similar to human disease both clinically and according to laboratory findings. In mouse, conjunctivitis was associated with a Th2 cytokine profile. However, IL-10 appeared to be involved with disease blockade. Mice of different strains have distinct immune responses, depending on the sensitization dose. Conclusions: The murine model developed is suitable for the study of immunopathogenesis and as a template for future therapies. Using BALB/c and C57BL/6 mice, we demonstrated that genetic factors play a role in determining susceptibility and resistance, as well as in establishing the allergen concentration needed to induce or to block disease development.
Resumo:
All Tn5 insertion mutants of Xanthomonas albilineans, the cause of leaf scald disease of sugar cane, which failed to produce albicidin antibiotics failed to cause chlorosis in inoculated sugar cane but- remained resistant to albicidin. Southern analysis revealed that mutants deficient in albicidin production carried the transposon on different chromosomal restriction fragments spanning at least: 50 kb in the X. albilineans genome, which is larger than any reported cluster of genes involved in the production of a bacterial phytotoxin. Albicidin-resistant cosmid clones from a Tox(-) Tn5 insertion mutant did not carry the transposon, and the subcloned albicidin resistance gene did not hybridize to any of the restriction fragments carrying Tn5 in the Tox(-) mutants, indicating that the albicidin biosynthesis and resistance genes are not closely linked in X. albilineans.
Resumo:
Two humanized monoclonal antibody constructs bearing the same variable regions of an anti-CD3 monoclonal antibody, whole IgG and FvFc, were expressed in CHO cells. Random and site-specific integration were used resulting in similar expression levels. The transfectants were selected with appropriate selection agent, and the surviving cells were plated in semi-solid medium for capture with FITC-conjugated anti-human IG antibody and picked with the robotic ClonePix FL. Conditioned media from selected clones were purified by affinity chromatography and characterized by SDS-PAGE, Western-blot, SEC-HPLC, and isoelectric focusing. Binding to the target present in healthy human mononuclear cells was assessed by flow cytometry, as well as by competition between the two constructs and the original murine monoclonal antibody. The humanized constructs were not able to dislodge the murine antibody while the murine anti-CD3 antibody could dislodge around 20% of the FvFc or IgG humanized versions. Further in vitro and in vivo pre-clinical analyses will be carried out to verify the ability of the humanized versions to demonstrate the immunoregulatory profile required for a humanized anti-CD3 monoclonal antibody.
Resumo:
Six Burkholderia solanacearum (formerly Pseudomonas solanacearum) genomic DNA fragments were isolated, using RAPD techniques and cloning, from the three genetically diverse strains: ACH092 (Biovar 4), ACH0158 (Biovar 2) and ACH0171 (Biovar 3) (1). One of these cloned fragments was selected because it was present constantly in all bacterial strains analysed. The remaining five clones were selected because Southern hybridisation revealed that each showed partial or complete specificity towards the strain of origin. A seventh genomic fragment showing a strain-specific distribution in Southern hybridisations was obtained by differential restriction, hybridisation and cloning of genomic DNA. Each of these clones was sequenced and primers to amplify the insert were designed. When DNA from the strain of origin was used as template, PCR amplification for each of these fragments yielded a single band on gel analysis. One pair of primers amplified the species-constant fragment of 281 bp from DNA of all B. solanacearum strains investigated, from DNA of the closely related bacterium which causes ''blood disease'' of banana (BDB) and in P. syzigii. The sensitivity of detection of B. solanacearum using these ubiquitous primers was between 1.3 and 20 bacterial cells. The feasibility and reliability of a PCR approach to detection and identification of B. solanacearum was tested in diverse strains of the bacterium in several countries and laboratories.
Resumo:
In this paper we describe the assembly and restriction map of a 1.05-Mb cosmid contig spanning the candidate region for familial Mediterranean fever (FMF), a recessively inherited disorder of inflammation localized to 16p13.3. Using a combination of cosmid walking and screening for P1, PAC, BAG, and YAC clones, we have generated a contig of genomic clones spanning similar to 1050 kb that contains the FMF critical region. The map consists of 179 cosmid, 15 P1, 10 PAC, 3 BAG, and 17 YAC clones, anchored by 27 STS markers. Eight additional STSs have been developed from the similar to 700 kb immediately centromeric to this genomic region. Five of the 35 STSs are microsatellites that have not been previously reported. NotI and EcoRI mapping of the overlapping cosmids, hybridization of restriction fragments from cosmids to one another, and STS analyses have been used to validate the assembly of the contig. Our contig totally subsumes the 250-kb interval recently reported, by founder haplotype analysis, to contain the FMF gene. Thus, our high-resolution clone map provides an ideal resource for transcriptional mapping toward the eventual identification of this disease gene. (C) 1997 Academic Press.
Resumo:
objective. To describe the management of patients with long-term central venous catheters (CVCs) during an outbreak of infection due to Pseudomonas putida and Stenotrophomonas maltophilia associated with contaminated heparin catheter-lock solution. design. Descriptive study. setting. Private, 250-bed tertiary-care hospital. methods. In March 2003, we identified 2 febrile cancer patients with P. putida bacteremia. Over 2 days, 7 cases of bacteremia were identified; lots of syringes prefilled with heparin catheter-lock solution, supplied by a compounding pharmacy, were recalled and samples were cultured. More cases of bacteremia appeared during the following days, and any patient who had had a catheter lock infused with the suspect solution was asked to provide blood samples for culture, even if the patient was asymptomatic. Isolates that were recovered from culture were typed by pulsed-field gel electrophoresis. Antimicrobial salvage treatment of long-term CVCs was attempted. results. A total of 154 patients had had their catheter lock infused with solution from the lots that were suspected of being contaminated. Only 48 of these patients had CVCs. By day 7 of the outbreak, 18 of these patients had become symptomatic. Twenty-six of the remaining 30 asymptomatic patients then also provided blood samples for culture, 10 of whom developed fever shortly after samples were collected. Thirty-two patients were identified who had P. putida bacteremia; 9 also had infection due to S. maltophilia. Samples from 1 of the 3 lots of prefilled syringes in use at the time of the outbreak also grew P. putida on culture. Molecular typing identified 3 different clones of P. putida from patients and heparin catheter-lock solution, and 1 clone of S. maltophilia. A total of 27 patients received antimicrobial therapy regimens, some of which included decontamination of the catheter lock with anti- infective lock solution. Of 27 patients, 19 (70%) retained their long-term CVC during the 6-month follow-up period. conclusions. To our knowledge, this is one of the largest prospective experiences in the management of bloodstream infection associated with long-term CVCs. The infections were caused by gram-negative bacilli and were managed without catheter removal, with a high response rate. We emphasize the risks of using intravenous formulations of medications supplied by compounding pharmacies that produce large quantities of drugs.
Resumo:
Understanding the mating patterns of populations of tree species is a key component of ex situ genetic conservation. In this study, we analysed the genetic diversity, spatial genetic structure (SGS) and mating system at the hierarchical levels of fruits and individuals as well as pollen dispersal patterns in a continuous population of Theobroma cacao in Para State, Brazil. A total of 156 individuals in a 0.56 ha plot were mapped and genotyped for nine microsatellite loci. For the mating system analyses, 50 seeds were collected from nine seed trees by sampling five fruits per tree (10 seeds per fruit). Among the 156 individuals, 127 had unique multilocus genotypes, and the remaining were clones. The population was spatially aggregated; it demonstrated a significant SGS up to 15m that could be attributed primarily to the presence of clones. However, the short seed dispersal distance also contributed to this pattern. Population matings occurred mainly via outcrossing, but selfing was observed in some seed trees, which indicated the presence of individual variation for self-incompatibility. The matings were also correlated, especially within ((r) over cap (p(m)) = 0.607) rather than among the fruits ((r) over cap (p(m)) = 0.099), which suggested that a small number of pollen donors fertilised each fruit. The paternity analysis suggested a high proportion of pollen migration (61.3%), although within the plot, most of the pollen dispersal encompassed short distances (28m). The determination of these novel parameters provides the fundamental information required to establish long-term ex situ conservation strategies for this important tropical species. Heredity (2011) 106, 973-985; doi:10.1038/hdy.2010.145; published online 8 December 2010
Resumo:
Antibody phage display libraries are a useful tool in proteomic analyses. This study evaluated an antibody recombinant library for identification of sex-specific proteins on the sperm cell surface. The Griffin.1 library was used to produce phage antibodies capable of recognizing membrane proteins from Nelore sperm cells. After producing soluble monoclonal scFv, clones were screened on Simental sperm cells by flow cytometry and those that bound to 40-60% of cells were selected. These clones were re-analyzed using Nelore sperm cells and all clones bound to 40-60% of cells. Positive clones were submitted to a binding assay against male and female bovine leukocytes by flow cytometry and one clone preferentially bound to male cells. The results indicate that phage display antibodies are an alternative method for identification of molecules markers on sperm cells. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
Glioblastoma multiforme (GBM) is a highly invasive and radioresistant brain tumor. Aiming to study how glioma cells respond to gamma-rays in terms of biological processes involved in cellular responses, we performed experiments at cellular context and gene expression analysis in U343-MG-a GBM cells irradiated with 1 Gy and collected at 6 h post-irradiation. The survival rate was approximately 61% for 1 Gy and was completely reduced at 16 Gy. By performing the microarray technique, 859 cDNA clones were analyzed. The Significance Analysis of Microarray algorithm indicated 196 significant expressed genes (false discovery rate (FDR) = 0.42%): 67 down-regulated and 97 up-regulated genes, which belong to several classes: metabolism, adhesion/cytoskeleton, signal transduction, cell cycle/apoptosis, membrane transport, DNA repair/DNA damage signaling, transcription factor, intracellular signaling, and RNA processing. Differential expression patterns of five selected genes (HSPA9B, INPP5A, PIP5K1A, FANCG, and TPP2) observed by the microarray analysis were further confirmed by the quantitative real time RT-PCR method, which demonstrated an up-regulation status of those genes. These results indicate a broad spectrum of biological processes (which may reflect the radio-resistance of U343 cells) that were altered in irradiated glioma cells, so as to guarantee cell survival.
Resumo:
P>We report a case of T-cell prolymphocytic leukemia (T-PLL) in a 41-year-old male. Classical cytogenetic, spectral karyotyping (SKY) and fluorescence in situ hybridization (FISH) studies of a blood sample obtained at diagnosis revealed the co-existence of t(X;14)(q28;q11), t(Y;14)(q12;q11) and a ring chromosome derivated from i(8)(q10). Immunophenotypic studies revealed involvement of T-cell lineage, with proliferation of CD4(-) CD8(+). The co-existence of two translocations involving both sex chromosomes in a case of T-PLL is rare. Chromosomal instability associated with the disease progression may have allowed the emergence of cell clones with translocations involving the sex chromosomes and the ring chromosome observed.
Resumo:
Since circulating leukocytes, mainly B and T cells, continuously maintain vigilant and comprehensive immune surveillance, these cells could be used as reporters for signs of infection or other pathologies, including cancer. Activated lymphocyte clones trigger a sensitive transcriptional response, which could be identified by gene expression profiling. To assess this hypothesis, we conducted microarray analysis of the gene expression profile of lymphocytes isolated from immunocompetent BALB/c mice subcutaneously injected with different numbers of tumorigenic B61 fibrosarcoma cells. Flow cytometry demonstrated that the number of circulating T (CD3(+)CD4(+) or CD3(+)CD8(+)) or B (CD19(+)) cells did not change. However, the lymphocytes isolated from tumor cell-injected animals expressed a unique transcriptional profile that was identifiable before the development of a palpable tumor mass. This finding demonstrates that the transcriptional response appears before alterations in the main lymphocyte subsets and that the gene expression profile of peripheral lymphocytes can serve as a sensitive and accurate method for the early detection of cancer. Exp Biol Med 234:802-812, 2009
Resumo:
Trichophyton rubrum is the most common etiological agent of human dermatophytosis. Despite the incidence and medical importance of this dermatophyte, little is known about the mechanisms of host invasion and pathogenicity. Host invasion depends on the adaptive cellular responses of the pathogen that allow it to penetrate the skin layers, which are mainly composed of proteins and lipids. In this study, we used suppression subtractive hybridization to identify transcripts over-expressed in T rubrum cultured in lipid as carbon source. Among the subtractive cDNA clones isolated, 85 clones were positively screened by cDNA array dot blotting and were sequenced. The putative proteins encoded by the isolated transcripts showed similarities to fungal proteins involved in metabolism, signaling, defense, and virulence, such as the MDR/ABC transporter, glucan 1,3-beta-glucosidase, chitin synthase B, copper-sulfate-regulated protein, and serine/threonine phosphatase (calcineurin A). These results provide the first molecular insight into the genes differentially expressed during the adaptation of T. rubrum to a lipidic carbon source.