922 resultados para Chromosomes, Human, Pair 2
Resumo:
Welche genetische Unterschiede machen uns verschieden von unseren nächsten Verwandten, den Schimpansen, und andererseits so ähnlich zu den Schimpansen? Was wir untersuchen und auch verstehen wollen, ist die komplexe Beziehung zwischen den multiplen genetischen und epigenetischen Unterschieden, deren Interaktion mit diversen Umwelt- und Kulturfaktoren in den beobachteten phänotypischen Unterschieden resultieren. Um aufzuklären, ob chromosomale Rearrangements zur Divergenz zwischen Mensch und Schimpanse beigetragen haben und welche selektiven Kräfte ihre Evolution geprägt haben, habe ich die kodierenden Sequenzen von 2 Mb umfassenden, die perizentrischen Inversionsbruchpunkte flankierenden Regionen auf den Chromosomen 1, 4, 5, 9, 12, 17 und 18 untersucht. Als Kontrolle dienten dabei 4 Mb umfassende kollineare Regionen auf den rearrangierten Chromosomen, welche mindestens 10 Mb von den Bruchpunktregionen entfernt lagen. Dabei konnte ich in den Bruchpunkten flankierenden Regionen im Vergleich zu den Kontrollregionen keine höhere Proteinevolutionsrate feststellen. Meine Ergebnisse unterstützen nicht die chromosomale Speziationshypothese für Mensch und Schimpanse, da der Anteil der positiv selektierten Gene (5,1% in den Bruchpunkten flankierenden Regionen und 7% in den Kontrollregionen) in beiden Regionen ähnlich war. Durch den Vergleich der Anzahl der positiv und negativ selektierten Gene per Chromosom konnte ich feststellen, dass Chromosom 9 die meisten und Chromosom 5 die wenigsten positiv selektierten Gene in den Bruchpunkt flankierenden Regionen und Kontrollregionen enthalten. Die Anzahl der negativ selektierten Gene (68) war dabei viel höher als die Anzahl der positiv selektierten Gene (17). Eine bioinformatische Analyse von publizierten Microarray-Expressionsdaten (Affymetrix Chip U95 und U133v2) ergab 31 Gene, die zwischen Mensch und Schimpanse differentiell exprimiert sind. Durch Untersuchung des dN/dS-Verhältnisses dieser 31 Gene konnte ich 7 Gene als negativ selektiert und nur 1 Gen als positiv selektiert identifizieren. Dieser Befund steht im Einklang mit dem Konzept, dass Genexpressionslevel unter stabilisierender Selektion evolvieren. Die meisten positiv selektierten Gene spielen überdies eine Rolle bei der Fortpflanzung. Viele dieser Speziesunterschiede resultieren eher aus Änderungen in der Genregulation als aus strukturellen Änderungen der Genprodukte. Man nimmt an, dass die meisten Unterschiede in der Genregulation sich auf transkriptioneller Ebene manifestieren. Im Rahmen dieser Arbeit wurden die Unterschiede in der DNA-Methylierung zwischen Mensch und Schimpanse untersucht. Dazu wurden die Methylierungsmuster der Promotor-CpG-Inseln von 12 Genen im Cortex von Menschen und Schimpansen mittels klassischer Bisulfit-Sequenzierung und Bisulfit-Pyrosequenzierung analysiert. Die Kandidatengene wurden wegen ihrer differentiellen Expressionsmuster zwischen Mensch und Schimpanse sowie wegen Ihrer Assoziation mit menschlichen Krankheiten oder dem genomischen Imprinting ausgewählt. Mit Ausnahme einiger individueller Positionen zeigte die Mehrzahl der analysierten Gene keine hohe intra- oder interspezifische Variation der DNA-Methylierung zwischen den beiden Spezies. Nur bei einem Gen, CCRK, waren deutliche intraspezifische und interspezifische Unterschiede im Grad der DNA-Methylierung festzustellen. Die differentiell methylierten CpG-Positionen lagen innerhalb eines repetitiven Alu-Sg1-Elements. Die Untersuchung des CCRK-Gens liefert eine umfassende Analyse der intra- und interspezifischen Variabilität der DNA-Methylierung einer Alu-Insertion in eine regulatorische Region. Die beobachteten Speziesunterschiede deuten darauf hin, dass die Methylierungsmuster des CCRK-Gens wahrscheinlich in Adaption an spezifische Anforderungen zur Feinabstimmung der CCRK-Regulation unter positiver Selektion evolvieren. Der Promotor des CCRK-Gens ist anfällig für epigenetische Modifikationen durch DNA-Methylierung, welche zu komplexen Transkriptionsmustern führen können. Durch ihre genomische Mobilität, ihren hohen CpG-Anteil und ihren Einfluss auf die Genexpression sind Alu-Insertionen exzellente Kandidaten für die Förderung von Veränderungen während der Entwicklungsregulation von Primatengenen. Der Vergleich der intra- und interspezifischen Methylierung von spezifischen Alu-Insertionen in anderen Genen und Geweben stellt eine erfolgversprechende Strategie dar.
Resumo:
Paraneoplastic pemphigus (PNP) is a devastating autoimmune blistering disease, involving mucocutaneous and internal organs, and associated with underlying neoplasms. PNP is characterized by the production of autoantibodies targeting proteins of the plakin and cadherin families involved in maintenance of cell architecture and tissue cohesion. Nevertheless, the identity of an antigen of Mr 170,000 (p170), thought to be critical in PNP pathogenesis, has remained unknown.
Resumo:
The cholecystokinin-2 receptor (CCK2R), is expressed in cancers where it contributes to tumor progression. The CCK2R is over-expressed in a sub-set of tumors, allowing its use in tumor targeting with a radiolabel ligand. Since discrepancies between mRNA levels and CCK2R binding sites were noticed, we searched for abnormally spliced variants in tumors from various origins having been previously reported to frequently express cholecystokinin receptors, such as medullary thyroid carcinomas, gastrointestinal stromal tumors, leiomyomas and leiomyosarcomas, and gastroenteropancreatic tumors. A variant of the CCK2R coding for a putative five-transmembrane domains receptor has been cloned. This variant represented as much as 6% of CCK2R levels. Ectopic expression in COS-7 cells revealed that this variant lacks biological activity due to its sequestration in endoplasmic reticulum. When co-expressed with the CCK2R, this variant diminished membrane density of the CCK2R and CCK2R-mediated activity (phospholipase-C and ERK activation). In conclusion, a novel splice variant acting as a dominant negative on membrane density of the CCK2R may be of importance for the pathophysiology of certain tumors and for their in vivo CCK2R-targeting.
Resumo:
Peptide hormones of the glucagon-like peptide (GLP) family play an increasing clinical role, as reported for GLP-1 in diabetes therapy and insulinoma diagnostics. GLP-2, despite its known trophic and anti-inflammatory intestinal actions translated into preliminary clinical studies using the GLP-2 analogue teduglutide for treatment of short bowel syndrome and Crohn's disease, remains poorly characterized in terms of expression of its receptor in tissues of interest. Therefore, the GLP-2 receptor expression was assessed in 237 tumor and 148 non-neoplastic tissue samples with in vitro receptor autoradiography. A GLP-2 receptor expression was present in 68% of gastrointestinal stromal tumors (GIST). Furthermore, GLP-2 receptors were identified in the intestinal myenteric plexus, with significant up-regulation in active Crohn's disease. The GLP-2 receptors in GIST may be used for clinical applications like in vivo targeting with radiolabelled GLP-2 analogues for imaging and therapy. Moreover, the over-expressed GLP-2 receptor in the myenteric plexus may represent the morphological correlate of the clinical target of teduglutide in Crohn's disease.
Resumo:
To assess human epidermal growth factor receptor-2 (HER2)-status in gastric cancer and matched lymph node metastases by immunohistochemistry (IHC) and chromogenic in situ hybridization (CISH).
Resumo:
OBJECTIVE: To determine whether a specifically designed bispecific (Bcl-2/Bcl-xL) antisense oligonucleotide (ASO) induces apoptosis and enhances chemosensitivity in human prostate cancer LNCaP cells, as Bcl-2 and Bcl-xL are both anti-apoptotic genes associated with treatment resistance and tumour progression in many malignancies, including prostate cancer. MATERIALS AND METHODS: Inhibition of Bcl-2 and Bcl-xL expression by the bispecific ASO was evaluated using real-time reverse transcription-polymerase chain reaction and Western blotting, while growth inhibition and induction of apoptosis were analysed by a crystal violet assay, flow cytometry and Western blotting of apoptosis-relevant proteins. The effect of combined treatment with bispecific ASO and chemotherapy or small-interference RNA (siRNA) targeting the clusterin gene was also investigated. RESULTS: Bispecific ASO reduced Bcl-2 and Bcl-xL expression in LNCaP cells in a dose-dependent manner. There was cell growth inhibition, increases in the sub-G0-G1 fraction, and cleavage of caspase-3 and poly(ADP-Ribose) polymerase proteins in LNCaP cells after bispecific ASO treatment. Interestingly, Bcl-2/Bcl-xL bispecific ASO treatment also resulted in the down-regulation of Mcl-1 and up-regulation of Bax. The sensitivity of LNCaP cells to mitoxantrone, docetaxel or paclitaxel was significantly increased, reducing the 50% inhibitory concentration by 45%, 80% or 90%, respectively. Furthermore, the apoptotic induction by Bcl-2/Bcl-xL bispecific ASO was synergistically enhanced by siRNA-mediated inhibition of clusterin, a cytoprotective chaperone that interacts with and inhibits activated Bax. CONCLUSIONS: These findings support the concept of the targeted suppression of Bcl-2 anti-apoptotic family members using multitarget inhibition strategies for prostate cancer, through the effective induction of apoptosis.
Resumo:
Heparin may cause adverse effects on bone formation following long-term application. The exact pathomechanism is unclear, but in vitro data suggest an impaired osteoblast function. The transcription axis of Cbfa-1 (Runx-2) and osteocalcin is crucial in maintaining an equilibrium of bone formation and resorption in vivo. We used a human osteoblast cell culture model to further investigate the effect of heparin (low-molecular-weight heparin, dalteparin) on the expression of these two regulators of osteoblast differentiation. At high doses, dalteparin caused a significant inhibition of both osteocalcin and Cbfa-1 expression in vitro. Our data support the hypothesis of a direct inhibition of osteoblast function underlying heparin osteoporosis.
Resumo:
Reduced activity of 11beta-hydroxysteroid dehydrogenase type 2 (11beta-HSD2) plays a role in essential hypertension and the sensitivity of blood pressure to dietary salt. Nonconservative mutations in the coding region are extremely rare and do not explain the variable 11beta-HSD2 activity. We focused therefore on the 5'-regulatory region and identified and characterized the first promoter polymorphisms. Transfections of variants G-209A and G-126A into SW620 cells reduced promoter activity and affinity for activators nuclear factor 1 (NF1) and Sp1. Chromatin immunoprecipitation revealed Sp1, NF1, and glucocorticoid receptor (GR) binding to the HSD11B2 promoter. Dexamethasone induced expression of mRNA and activity of HSD11B2. GR and/or NF1 overexpression increased endogenous HSD11B2 mRNA and activity. GR complexes cooperated with NF1 to activate HSD11B2, an effect diminished in the presence of the G-209A variant. When compared to salt-resistant subjects (96), salt-sensitive volunteers (54) more frequently had the G-209A variant, higher occurrence of alleles A4/A7 of polymorphic microsatellite marker, and higher urinary ratios of cortisol to cortisone metabolites. First, we conclude that the mechanism of glucocorticoid-induced HSD11B2 expression is mainly mediated by cooperation between GR and NF1 on the HSD11B2 promoter and, second, that the newly identified promoter variants reduce activity and cooperation of cognate transcription factors, resulting in diminished HSD11B2 transcription, an effect favoring salt sensitivity.
Resumo:
The human adrenal cortex produces mineralocorticoids, glucocorticoids, and androgens in a species-specific, hormonally regulated, zone-specific, and developmentally characteristic fashion. Most molecular studies of adrenal steroidogenesis use human adrenocortical NCI-H295A and NCI-H295R cells as a model because appropriate animal models do not exist. NCI-H295A and NCI-H295R cells originate from the same adrenocortical carcinoma which produced predominantly androgens but also smaller amounts of mineralocorticoids and glucocorticoids. Research data obtained from either NCI-H295A or NCI-H295R cells are generally compared, although for the same experiments no direct comparison between the two cell lines has been performed. Therefore, we compared the steroid profile and the expression pattern of important genes involved in steroidogenesis in both cell lines. We found that steroidogenesis differs profoundly. NCI-H295A cells produce more mineralocorticoids, whereas NCI-H295R cells produce more androgens. Expression of the 3beta-hydroxysteroid dehydrogenase (HSD3B2), cytochrome b5, and sulfonyltransferase genes is higher in NCI-H295A cells, whereas expression of the cytochrome P450c17 (CYP17), 21-hydroxylase (CYP21), and P450 oxidoreductase genes does not differ between the cell lines. We found lower 3beta-hydroxysteroid dehydrogenase type 2 but higher 17,20-lyase activity in NCI-H295R cells explaining the 'androgenic' steroid profile for these cells and resembling the zona reticularis of the human adrenal cortex. Both cell lines were found to express the ACTH receptor at low levels consistent with low stimulation by ACTH. By contrast, both cell lines were readily stimulated by 8Br-cAMP. The angiotensin type 1 receptor was highly expressed in NCI-H295R than NCI-H295A cells and angiotensin II stimulated steroidogenesis in NCI-H295R but not NCI-H295A cells. Our data suggest that comparative studies between NCI-H295A and NCI-H295R cells may help find important regulators of mineralocorticoid or androgen biosynthesis.
Resumo:
This study evaluated the course of psychological variables during a 2-year follow-up in patients after common whiplash of the cervical spine. From a sample of 117 non-selected patients with common whiplash (investigated on average 7.2 +/- 4.2 days after trauma) a total of 21 suffered trauma-related symptoms over 2 years following initial injury. These patients (symptomatic group) were compared with 21 age, gender and education pair-matched patients, who showed complete recovery from trauma-related symptoms during the 2-year follow-up (asymptomatic group). Both groups underwent standardised testing procedures (i.e., Freiburg Personality Inventory and Well-Being Scale) at referral, and at 3, 6 and 24 months. In the symptomatic group during follow-up no significant changes in rating of neck pain or headache were found. Significant differences between the groups and significant deviation of scores over time were found on the Well-Being and Nervousness Scales. There was a lack of significant difference between the groups on the Depression Scale, indicating a possible somatic basis for changes in psychological functioning in the investigated sample. With regard to scales of Extraversion or Neuroticism, there were neither significant differences between the groups nor significant deviation over time. These results highlight that patients' psychological problems are rather a consequence than a cause of somatic symptoms in whiplash.
Resumo:
BACKGROUND AND PURPOSE: Anti-inflammatory drugs are used in the treatment of acute renal colic. The aim of this study was to investigate the effects of selective COX-2 inhibitors and the non-selective COX inhibitor diclofenac on contractility of human and porcine ureters in vitro and in vivo, respectively. COX-1 and COX-2 receptors were identified in human ureter and kidney. EXPERIMENTAL APPROACH: Human ureter samples were used alongside an in vivo pig model with or without partial ureteral obstruction. COX-1 and COX-2 receptors were located in human ureters by immunohistochemistry. KEY RESULTS: Diclofenac and valdecoxib significantly decreased the amplitude of electrically-stimulated contractions in human ureters in vitro, the maximal effect (Vmax) being 120 and 14%, respectively. Valdecoxib was more potent in proximal specimens of human ureter (EC50=7.3 x 10(-11) M) than in distal specimens (EC50=7.4 x 10(-10) M), and the Vmax was more marked in distal specimens (22.5%) than in proximal specimens (8.0%) in vitro. In the in vivo pig model, parecoxib, when compared to the effect of its solvent, significantly decreased the maximal amplitude of contractions (Amax) in non-obstructed ureters but not in obstructed ureters. Diclofenac had no effect on spontaneous contractions of porcine ureter in vivo. COX-1 and COX-2 receptors were found to be expressed in proximal and distal human ureter and in tubulus epithelia of the kidney. CONCLUSIONS AND IMPLICATIONS: Selective COX-2 inhibitors decrease the contractility of non-obstructed, but not obstructed, ureters of the pig in vivo, but have a minimal effect on electrically-induced contractions of human ureters in vitro.
Resumo:
BACKGROUND: Acne inversa is a chronic inflammatory disorder of apocrine gland-bearing skin. The role of the innate immune system in the pathogenesis of the disease is controversial. OBJECTIVES: We investigated the expression of antimicrobial peptide/proteins in acne inversa. METHODS: Tissue samples were obtained from patients with acne inversa and compared with normal-appearing skin. The expression of psoriasin and human beta-defensin (hBD)-2 on messenger RNA and protein level was analyzed. RESULTS: Both messenger RNA and protein levels of psoriasin and hBD-2 were significantly increased in acne inversa. Macrophages expressing hBD-2 were found in the dermis. LIMITATIONS: Small sample size is a limitation. CONCLUSIONS: Antimicrobial peptide/proteins are overexpressed in acne inversa lesions as compared with normal-appearing skin. The site of the major expression depends on the particular antimicrobial peptide/protein. Psoriasin is overexpressed in epidermal keratinocytes whereas hBD-2 is produced mainly by dermal macrophages, leaving a relative deficiency of hBD-2 in the epidermis of acne inversa lesions.
Resumo:
PURPOSE: The Akt/mammalian target of rapamycin (mTOR) pathway is frequently activated in human cancers and plays an important role in small cell lung cancer (SCLC) biology. We investigated the potential of targeting mTOR signaling as a novel antitumor approach in SCLC. EXPERIMENTAL DESIGN: The expression of mTOR in patient specimens and in a panel of SCLC cell lines was analyzed. The effects on SCLC cell survival and downstream signaling were determined following mTOR inhibition by the rapamycin derivative RAD001 (Everolimus) or down-regulation by small interfering RNA. RESULTS: We found elevated expression of mTOR in patient specimens and SCLC cell lines, compared with normal lung tissue and normal lung epithelial cells. RAD001 treatment impaired basal and growth factor-stimulated cell growth in a panel of SCLC cell lines. Cells with increased Akt pathway activation were more sensitive to RAD001. Accordingly, a constitutive activation of the Akt/mTOR pathway was sufficient to sensitize resistant SCLC cells to the cytotoxic effect of RAD001. In the sensitive cells, RAD001 showed a strong additive effect to the proapoptotic action of the chemotherapeutic agent etoposide. Intriguingly, we observed low Bcl-2 family proteins levels in the SCLC cells with a constitutive Akt pathway activation, whereas an increased expression was detected in the RAD001-resistant SCLC cells. An antisense construct targeting Bcl-2 or a Bcl-2-specific inhibitor was able to sensitize resistant SCLC cells to RAD001. Moreover, SCLC tumor growth in vivo was significantly inhibited by RAD001. CONCLUSION: Together, our data show that inhibiting mTOR signaling with RAD001 potently disrupts growth and survival signaling in human SCLC cells.