1000 resultados para Catalisadores : Complexos de níquel
Resumo:
Were synthesized in this work in the following aqueous solution coordination compounds: [Ni(LDP)(H2O)2Cl2].2H2O, [Co(LDP)Cl2].3H2O, [Ni(CDP)Cl2].4H2O, [Co(CDP)Cl2].4H2O, [Ni(BDZ)2Cl2].4H2O and [Co(BDZ)2Cl2(H2O)2]. These complexes were synthesized by stoichiometric addition of the binder in the respective metal chloride solutions. Precipitation occurred after drying the solvent at room temperature. The characterization and proposed structures were made using conventional analysis methods such as elemental analysis (CHN), absorption spectroscopy in the infrared Fourier transform spectroscopy (FTIR), X-ray diffraction by the powder method and Technical thermoanalytical TG / DTG (thermogravimetry / derivative thermogravimetry) and DSC (differential scanning calorimetry). These techniques provided information on dehydration, coordination modes, thermal performance, composition and structure of the synthesized compounds. The results of the TG curve, it was possible to establish the general formula of each compound synthesized. The analysis of X-ray diffraction was observed that four of the synthesized complex crystal structure which does not exhibit the complex was obtained from Ldopa and carbidopa and the complex obtained from benzimidazole was obtained crystal structures. The observations of the spectra in the infrared region suggested a monodentate ligand coordination to metal centers through its amine group for all complexes. The TG-DTG and DSC curves provide important information and on the behavior and thermal decomposition of the synthesized compounds. The molar conductivity data indicated that the solutions of the complexes formed behave as a nonelectrolyte, which implies that chlorine is coordinated to the central atom in the complex.
Resumo:
Lubricants and cutting middle distillates typically have large amounts of n-paraffins to increase its freezing point and fluidity. Accordingly, the removal of n-paraffins of long chain lubricants oils and diesel is essential to get a product with good cold flow properties. The development of new catalysts, which exhibit thermal stability and catalytic activity for the hydroisomerization reaction is still a challenge. Thus, silicoaluminophosphates (SAPO) were synthesized by different routes. Have been used also post-synthesis treatment for obtaining hybrid structures and others synthesis have been carried out with mesoporous template (soft and hard-template). Therefore, SAPO have been impregnated with H2PtCl6 solution by the incipient wetness method. Then assessments of catalytic activities in hydroisomerization and hydrocracking reactions of hexadecane have been held. Besides SAPO, niobium phosphate - NbP - were also impregnated with platinum and evaluated in the same reaction. After impregnation, these catalysts have been characterized by X-ray diffraction (XRD), nitrogen adsorption, infrared spectroscopy with adsorbed pyridine (IV-PY), scanning electron microscopy (SEM) and resonance nuclear magnetic 29Si (29Si-NMR). The characterization results by XRD have shown that it has been possible to obtain mesoporous SAPOs. However, for the syntheses with soft template there was collapse of the structure after removal of the organic template. Even so, these catalysts have been actives. It was possible to obtain hybrid materials through the synthesis of SAPO-11 made with hard templates and by means of post-synthesis treatments samples of SAPO-11. Moreover, NbP has shown characteristic XRD of amorphous materials, with high acidity and were active in the conversion of hexadecane.
Resumo:
Lubricants and cutting middle distillates typically have large amounts of n-paraffins to increase its freezing point and fluidity. Accordingly, the removal of n-paraffins of long chain lubricants oils and diesel is essential to get a product with good cold flow properties. The development of new catalysts, which exhibit thermal stability and catalytic activity for the hydroisomerization reaction is still a challenge. Thus, silicoaluminophosphates (SAPO) were synthesized by different routes. Have been used also post-synthesis treatment for obtaining hybrid structures and others synthesis have been carried out with mesoporous template (soft and hard-template). Therefore, SAPO have been impregnated with H2PtCl6 solution by the incipient wetness method. Then assessments of catalytic activities in hydroisomerization and hydrocracking reactions of hexadecane have been held. Besides SAPO, niobium phosphate - NbP - were also impregnated with platinum and evaluated in the same reaction. After impregnation, these catalysts have been characterized by X-ray diffraction (XRD), nitrogen adsorption, infrared spectroscopy with adsorbed pyridine (IV-PY), scanning electron microscopy (SEM) and resonance nuclear magnetic 29Si (29Si-NMR). The characterization results by XRD have shown that it has been possible to obtain mesoporous SAPOs. However, for the syntheses with soft template there was collapse of the structure after removal of the organic template. Even so, these catalysts have been actives. It was possible to obtain hybrid materials through the synthesis of SAPO-11 made with hard templates and by means of post-synthesis treatments samples of SAPO-11. Moreover, NbP has shown characteristic XRD of amorphous materials, with high acidity and were active in the conversion of hexadecane.
Resumo:
Many changes have taken place in contemporary society causing impacts in its different sectors, making it much more complex and insecure than in past times. The alteration on the decision-making system of the Brazilian society is among the main changes today. The post-modern context contributed to the occurrence of the transfer of state power of the Legislative and Executive Powers to the Judiciary Power, specifically to the Federal Court of Justice, leading to an expansion on the actuation range of this institution mainly through the exercise of the constitutional jurisdiction. This has caused a crisis of legitimacy in society once the Court will now decide the political and social fundamental issues. In this scenario, the Direct Action of Unconstitutionality n° 3937/SP and n° 3357/RS are highlighted and both are being tried by the Supreme Court. Such emphasis is given, since it is a matter of high complexity and social repercussion that will be decided by a legal institution and not a political one. Thus, this work aims to analyze the role of the Supreme Court in the context of contemporary society on the trial of complex and controversial cases, particularly on the trial of Direct Action of Unconstitutionality n° 3937/SP and n° 3357/RS. This study has noticed that due to the post-modern context the majority of the Supreme Court Ministers tend to base their votes in constitutional principles and no longer limit themselves to a formal review of the constitutionality of laws, which indicates a substantialist approach. Moreover, it can be noticed the deliberative potential of the Court as well as the influence of the post-modern features, such as risk, uncertainty and insecurity on the elaboration of the Minister‟s votes. Therefore, sometimes, such as the case in study, the Supreme Court has acted as a technocratic agent in Brazilian society once fundamental political and social decisions for society especially when it comes to complex and controversial cases are being taken by the Supreme Court, which is composed by “Law technicians” and such decisions are mainly based in technical data and scientific studies. For the accomplishment of this work, it has been adopted the inductive approach and monographic procedure method and the bibliographical and documentary research technique.
Resumo:
Chemical modification of polymer matrices is an alternative way to change its surface properties. The introduction of sulfonic acid groups in polymer matrices alter properties such as adhesion, wettability, biocampatibility, catalytic activity, among others. This paper describes the preparation of polymeric solid acid based on the chemical modification of poly (1-fenietileno) (PS) and Poly (1-chloroethylene) (PVC) by the introduction of sulfonic acid groups and the application of these polymers as catalysts in the esterification reaction of oleic acid with methanol. The modified materials were characterized by Infrared Spectroscopy, Elemental Analysis and titration acid-base of the acid groups. All techniques confirmed the chemical changes and the presence of sulfur associated with sulfonic acid groups or sulfates. The modified polymers excellent performance in the esterification reaction of oleic acid with methanol a degree of conversion higher than 90% for all investigated polymers (modified PS and PVC (5% w / w)), with a mass ratio of oleic acid: methanol 1:10 to 100 ° C. The best performance was observed for the modified PVC catalyst (PVCS) which showed low degree of swelling during the reactions is recovered by filtration different from that observed for polystyrene sulfonate (PSS). Given these facts, the PVCS was employed as a catalyst in the esterification reaction of oleic acid in different times and different temperatures to obtain the kinetic parameters of the reaction. Experimental data show a great fit for pseudo-homogeneous model of second order and activation energy value of 41.12 kJ mol -1, below that found in the literature for the uncatalyzed reaction, 68.65 kJ mol -1 .The PVCS exhibits good catalytic activity for 3 times of reuse, with a slight decrease in the third cycle, but with a conversion of about 78%. The results show that solid polymeric acid has good chemical stability for the application in esterification reaction of commercial importance with possible application in the biodiesel production. The advantages in use of this system are the increased reaction rate at about 150 times, at these test conditions, the replacement of sulfuric acid as a catalyst for this being the most corrosive and the possibility of reuse of the polymer for several cycles.
Resumo:
This study involved the synthesis of photocatalysts based on titanium dioxide (TiO2). The photocatalysts were synthesized by the sol-gel method using three different proportions of acetone (25%, 50% and 75% v/v) in water/acetone mixtures, in order to control the hydrolysis of the precursor of titanium (titanium tetraisopropoxide). Aiming to investigate the structural, morphological and electronic changes provoked by the use of the solvent mixtures, different methodologies were used to characterize the oxides, such as X-ray diffraction (XRD), RAMAN spectroscopy, UV-Vis diffuse reflectance spectroscopy, and measurements of specific surface area (BET). XRD combined to RAMAN analyses revealed that the products are two-phase highly crystalline oxides involving anatase as main phase and brookite. Besides, the refined XRD using the method of Rietveld demonstrated that the presence of acetone during the synthesis influenced in the composition of the crystalline phases, increasing the proportion of the brookite phase between 13 and 22%. The band gap energy of these oxides practically did not suffer changes as function of the synthesis conditions. As shown by the isotherm, these photocatalysts are mesoporous materials with mean diameter of pores of 7 nm and approximately 20% of porosity. The surface area of the oxides prepared by hydrolysis in presence of acetone was 12% higher compared to the bare oxide. After characterized, these oxides had their photocatalytic activities evaluated by photodegradation of the azo dyes Ponceau 4R (P4R), Tartrazine (TTZ) and Reactive Red 120 (RR120), and also by the ability to mediate the photocatalytic production of hydrogen. Using the most efficient photocatalyst, the mineralization achieved for the dyes P4R, RR120 and TTZ was of respectively 83%, 79% and 56% in 120 minutes of reaction, while the discoloration of P4R e RR120 reached 100% and 94% for TTZ. In addition, the same photocatalyst in the presence of 0.5% w/w of Platinum and suspended in a 5:1 v/v water/methanol mixture, produced 56 mmol of gaseous hydrogen in five hours of experiment, corresponding to a specific rate of hydrogen production of 139.5 mmol h-1 g-1.
Resumo:
Tese (Doutoramento)
Resumo:
Alkali tantalates and niobates, including K(Ta / Nb)O3, Li(Ta / Nb)O3 and Na(Ta / Nb)O3, are a very promising ferroic family of lead-free compounds with perovskite-like structures. Their versatile properties make them potentially interesting for current and future application in microelectronics, photocatalysis, energy and biomedics. Among them potassium tantalate, KTaO3 (KTO), has been raising interest as an alternative for the well-known strontium titanate, SrTiO3 (STO). KTO is a perovskite oxide with a quantum paraelectric behaviour when electrically stimulated and a highly polarizable lattice, giving opportunity to tailor its properties via external or internal stimuli. However problems related with the fabrication of either bulk or 2D nanostructures makes KTO not yet a viable alternative to STO. Within this context and to contribute scientifically to the leverage tantalate based compounds applications, the main goals of this thesis are: i) to produce and characterise thin films of alkali tantalates by chemical solution deposition on rigid Si based substrates, at reduced temperatures to be compatible with Si technology, ii) to fulfil scientific knowledge gaps in these relevant functional materials related to their energetics and ii) to exploit alternative applications for alkali tantalates, as photocatalysis. In what concerns the synthesis attention was given to the understanding of the phase formation in potassium tantalate synthesized via distinct routes, to control the crystallization of desired perovskite structure and to avoid low temperature pyrochlore or K-deficient phases. The phase formation process in alkali tantalates is far from being deeply analysed, as in the case of Pb-containing perovskites, therefore the work was initially focused on the process-phase relationship to identify the driving forces responsible to regulate the synthesis. Comparison of phase formation paths in conventional solid-state reaction and sol-gel method was conducted. The structural analyses revealed that intermediate pyrochlore K2Ta2O6 structure is not formed at any stage of the reaction using conventional solid-state reaction. On the other hand in the solution based processes, as alkoxide-based route, the crystallization of the perovskite occurs through the intermediate pyrochlore phase; at low temperatures pyrochlore is dominant and it is transformed to perovskite at >800 °C. The kinetic analysis carried out by using Johnson-MehlAvrami-Kolmogorow model and quantitative X-ray diffraction (XRD) demonstrated that in sol-gel derived powders the crystallization occurs in two stages: i) at early stage of the reaction dominated by primary nucleation, the mechanism is phase-boundary controlled, and ii) at the second stage the low value of Avrami exponent, n ~ 0.3, does not follow any reported category, thus not permitting an easy identification of the mechanism. Then, in collaboration with Prof. Alexandra Navrotsky group from the University of California at Davis (USA), thermodynamic studies were conducted, using high temperature oxide melt solution calorimetry. The enthalpies of formation of three structures: pyrochlore, perovskite and tetragonal tungsten bronze K6Ta10.8O30 (TTB) were calculated. The enthalpies of formation from corresponding oxides, ∆Hfox, for KTaO3, KTa2.2O6 and K6Ta10.8O30 are -203.63 ± 2.84 kJ/mol, - 358.02 ± 3.74 kJ/mol, and -1252.34 ± 10.10 kJ/mol, respectively, whereas from elements, ∆Hfel, for KTaO3, KTa2.2O6 and K6Ta10.8O30 are -1408.96 ± 3.73 kJ/mol, -2790.82 ± 6.06 kJ/mol, and -13393.04 ± 31.15 kJ/mol, respectively. The possible decomposition reactions of K-deficient KTa2.2O6 pyrochlore to KTaO3 perovskite and Ta2O5 (reaction 1) or to TTB K6Ta10.8O30 and Ta2O5 (reaction 2) were proposed, and the enthalpies were calculated to be 308.79 ± 4.41 kJ/mol and 895.79 ± 8.64 kJ/mol for reaction 1 and reaction 2, respectively. The reactions are strongly endothermic, indicating that these decompositions are energetically unfavourable, since it is unlikely that any entropy term could override such a large positive enthalpy. The energetic studies prove that pyrochlore is energetically more stable phase than perovskite at low temperature. Thus, the local order of the amorphous precipitates drives the crystallization into the most favourable structure that is the pyrochlore one with similar local organization; the distance between nearest neighbours in the amorphous or short-range ordered phase is very close to that in pyrochlore. Taking into account the stoichiometric deviation in KTO system, the selection of the most appropriate fabrication / deposition technique in thin films technology is a key issue, especially concerning complex ferroelectric oxides. Chemical solution deposition has been widely reported as a processing method to growth KTO thin films, but classical alkoxide route allows to crystallize perovskite phase at temperatures >800 °C, while the temperature endurance of platinized Si wafers is ~700 °C. Therefore, alternative diol-based routes, with distinct potassium carboxylate precursors, was developed aiming to stabilize the precursor solution, to avoid using toxic solvents and to decrease the crystallization temperature of the perovskite phase. Studies on powders revealed that in the case of KTOac (solution based on potassium acetate), a mixture of perovskite and pyrochlore phases is detected at temperature as low as 450 °C, and gradual transformation into monophasic perovskite structure occurs as temperature increases up to 750 °C, however the desired monophasic KTaO3 perovskite phase is not achieved. In the case of KTOacac (solution with potassium acetylacetonate), a broad peak is detected at temperatures <650 °C, characteristic of amorphous structures, while at higher temperatures diffraction lines from pyrochlore and perovskite phases are visible and a monophasic perovskite KTaO3 is formed at >700 °C. Infrared analysis indicated that the differences are due to a strong deformation of the carbonate-based structures upon heating. A series of thin films of alkali tantalates were spin-coated onto Si-based substrates using diol-based routes. Interestingly, monophasic perovskite KTaO3 films deposited using KTOacac solution were obtained at temperature as low as 650 °C; films were annealed in rapid thermal furnace in oxygen atmosphere for 5 min with heating rate 30 °C/sec. Other compositions of the tantalum based system as LiTaO3 (LTO) and NaTaO3 (NTO), were successfully derived as well, onto Si substrates at 650 °C as well. The ferroelectric character of LTO at room temperature was proved. Some of dielectric properties of KTO could not be measured in parallel capacitor configuration due to either substrate-film or filmelectrode interfaces. Thus, further studies have to be conducted to overcome this issue. Application-oriented studies have also been conducted; two case studies: i) photocatalytic activity of alkali tantalates and niobates for decomposition of pollutant, and ii) bioactivity of alkali tantalate ferroelectric films as functional coatings for bone regeneration. Much attention has been recently paid to develop new type of photocatalytic materials, and tantalum and niobium oxide based compositions have demonstrated to be active photocatalysts for water splitting due to high potential of the conduction bands. Thus, various powders of alkali tantalates and niobates families were tested as catalysts for methylene blue degradation. Results showed promising activities for some of the tested compounds, and KNbO3 is the most active among them, reaching over 50 % degradation of the dye after 7 h under UVA exposure. However further modifications of powders can improve the performance. In the context of bone regeneration, it is important to have platforms that with appropriate stimuli can support the attachment and direct the growth, proliferation and differentiation of the cells. In lieu of this here we exploited an alternative strategy for bone implants or repairs, based on charged mediating signals for bone regeneration. This strategy includes coating metallic 316L-type stainless steel (316L-SST) substrates with charged, functionalized via electrical charging or UV-light irradiation, ferroelectric LiTaO3 layers. It was demonstrated that the formation of surface calcium phosphates and protein adsorption is considerably enhanced for 316L-SST functionalized ferroelectric coatings. Our approach can be viewed as a set of guidelines for the development of platforms electrically functionalized that can stimulate tissue regeneration promoting direct integration of the implant in the host tissue by bone ingrowth and, hence contributing ultimately to reduce implant failure.
Resumo:
This study aims to develop a manipulative material to assist the teaching and learning of Complex Numbers. Primarily, It tries to define the status of the current teaching of Complex Numbers, having as guide the bias of the research produced in dissertations and published on the website of Capes and the Virtual Library of Profmat from 2004 to 2014. It presents historical aspects of the theme, a mathematical foundation and a discussion of the use of manipulative materials as teaching resources for the teaching of mathematics. It introduces the manipulative material called GeoPlexo and a sequence of activities of potentiation and settling of complex numbers, explaining its use. It concludes with the importance of manipulative materials as a teaching resource for the teaching of Complex Numbers, especially regarding the geometric visualization of this mathematical object.
Resumo:
Este trabalho apresenta a síntese e caracterização de cinco ligantes e quatro complexos derivados de oximas e tiossemicarbazonas. Entre essas, discutem-se as estruturas cristalinas/moleculares determinadas por difração de raios-X em monocristais: do ligante 4-feniltiossemicarbazida-isatina (Ligante 5), do complexo piridina-salicilaldeído-4- feniltiossemicarbazona de niquel (II) (Complexo 1), e do bis-4-feniltiossemicarbazonaisatina de chumbo(II) (Complexo 2). A estrutura do Ligante 5 cristaliza no sistema monoclínico, grupo espacial P21/c, com parâmetros de cela a = 6,3227(2) Å, b = 15,7973(7) Å, c = 14,4572(6) Å, β = 93,9330(10)°, V = 1440,61(10) Å3 , Z = 4. O refinamento da estrutura convergiu aos índices de discordância finais R1 = 0,0520, wR2 = 0,1471. Observa-se ainda a ocorrência de interações intermoleculares do tipo ligações de hidrogênio clássicas [N18−H3---O1′ 2,907(2)Å], com a formação de estruturas dímeras inter-relacionadas por simetria dentro da cela cristalina. Para a estrutura cristalina do Complexo 1, observa-se NC=4, e geometria de coordenação quadrada plana, onde o ligante saliciladeído-4-feniltiossemicarbazida comporta-se como quelante tridentado, e completando a esfera de coordenação do centro metálico temos uma molécula de piridina. A estrutura cristaliza no sistema monoclínico, grupo espacial P21/m, parâmetros de cela a = 12,8211(2) Å, b = 5,73370(10) Å, c = 23,9950(4) Å, β = 101,0910(10)°, V = 1730,98(5) Å3 , índices de discordância finais R1= 0,0320, wR2 = 0,0888, Z=3. O Complexo 1 apresenta ainda interações intermoleculares do tipo [N(3)-H(3)---S(1) = 3,5838(17)º, N(3)–H(3A)---S(1) = 160,91(19)º], formando estruturas dímeras e ligação de hidrogênio intramolecular não-clássica do tipo [C(10)-H(10)---N(2) = 2,838(2)º e C(10) – H(10)---N(2) = 122º]. A estrutura cristalina do complexo 2, apresenta duas formas independentes (uma com centro representado por Pb1 e outra por Pb2). Para a unidade com Pb1 temos o complexo composto por duas unidades do Ligante 5, que comportam-se como quelantes tridentados, e a esfera de coordenação é completada por interações intermoleculares do tipo η 2 areno π e através da ligação polarizada com o O1 da moléculas vizinha, o que confere ao íon Pb1 NC=9. A unidade Pb2 apresenta apenas as duas unidades do Ligante 5 coordenadas conferindo-lhe NC=6. A estrutura cristaliza no sistema monoclínico, grupo espacial C2/c, parâmetros de cela a = 37,9747(6) Å, b= 9,51280(10) Å, c = 31,4378(5) Å, β = 125,951(2)°, V= 9193,5(2) Å3 , Z = 4, índices de discordância finais= R1 = 0,0643, wR2 = 0,1227.
Resumo:
Neste trabalho são apresentadas e discutidas as estruturas cristalinas e moleculares do ligante (1), isatina-3-(toluilsulfono-hidrazona), dos complexos [bis(2-acetilpiridina-N4 - benziltiossemicarbazona-N,N,S)Cd(II)], (1), [bis (isatina-3-N4 -benziltiossemicarbazonaN,S)Hg(II)].Etanol, (2) e [bis (isatina-3-N4 -benziltiossemicarbazona-N,S,O)Zn(II)].DMF, (3). Cristais amarelos vítreos do ligante (1) foram obtidos a partir da evaporação lenta de etanol do ensaio de cristalização. Seus dados cristalográficos indicam que duas moléculas interagem através de ligações de hidrogênio do tipo N1-H···O1, formando unidades dímeras. A reação entre 2-acetilpiridina-N4 -benziltiossemicarbazona e Cd(CH3COO)2.2H2O, em presença de etanol, KOH, e após evaporação lenta da mistura de acetona e DMF(2:1), resultou em cristais amarelos do complexo (1). As interações do tipo C(10)-H(10)···S(1)···H(1)-N(4), e N(8)- H(29)⋅⋅⋅S(2) permitem a dimerização do complexo, e a formação de uma cadeia unidimensional. Os cristais laranja do complexo (2) foram obtidos da reação entre o ligante isatina-3-N4 -benziltiossemicarbazona e Hg(NO3)2.H2O, na presença de metanol, KOH, e após evaporação lenta de uma mistura de tolueno e acetona (2:1). As moléculas do complexo (2) estão associadas por ligações de hidrogênio do tipo N(63)-H(4)···O(21), essas interações centrossimétricas conduzem a formação de dímeros. A reação entre o ligante isatina-3-N4 - benziltiossemicarbazona e Zn(CH3COO)2.2H2O, em presença de etanol e KOH resultou em cristais de coloração laranja do complexo (3). A estrutura do complexo apresenta múltiplas ligações de hidrogênio, com formação de dímeros através das interações N1-H1···O1 e C3- H3···N(7). Os dímeros associam-se por interações N4-H4···O2 numa cadeia unidimensional ao longo da direção cristalográfica [100]. A polimerização bidimensional é observada 7 considerando-se as interações do tipo C20-H20···S1, N8-H8···S2 ao longo da direção cristalográfica [010], bem como das interações, N5-H5···O3DMF e C31-H31B···Car, que ocorrem através da molécula de solvente DMF.