972 resultados para Budget function classification
Resumo:
Introduction - Cerebrovascular diseases, and among them, cerebral vascular accidents, are one of the main causes of morbidity and disability at European Union countries. Clinical framework resulting from these diseases include important limitations in functional ability of the these patients Postural control dysfunctions are one of the most common and devastating consequences of a stroke interfering with function and autonomy and affecting different aspects of people’s life and contributing to decrease quality of life. Neurological physiotherapy plays a central role in the recovery of movement and posture, however it is necessary to study the efficacy of techniques that physiotherapists use to treat these problems. Objectives - The aim of this study was to investigate the effects of a physiotherapy intervention program, based on oriented tasks and strengthening of the affected lower limb, on balance and functionality of individuals who have suffered a stroke. In addition our study aimed to investigate the effect of strength training of the affected lower limb on muscle tone.
Resumo:
O documento em anexo encontra-se na versão post-print (versão corrigida pelo editor).
Resumo:
This paper presents an integrated system for vehicle classification. This system aims to classify vehicles using different approaches: 1) based on the height of the first axle and_the number of axles; 2) based on volumetric measurements and; 3) based on features extracted from the captured image of the vehicle. The system uses a laser sensor for measurements and a set of image analysis algorithms to compute some visual features. By combining different classification methods, it is shown that the system improves its accuracy and robustness, enabling its usage in more difficult environments satisfying the proposed requirements established by the Portuguese motorway contractor BRISA.
Resumo:
In music genre classification, most approaches rely on statistical characteristics of low-level features computed on short audio frames. In these methods, it is implicitly considered that frames carry equally relevant information loads and that either individual frames, or distributions thereof, somehow capture the specificities of each genre. In this paper we study the representation space defined by short-term audio features with respect to class boundaries, and compare different processing techniques to partition this space. These partitions are evaluated in terms of accuracy on two genre classification tasks, with several types of classifiers. Experiments show that a randomized and unsupervised partition of the space, used in conjunction with a Markov Model classifier lead to accuracies comparable to the state of the art. We also show that unsupervised partitions of the space tend to create less hubs.
Resumo:
This paper describes a methodology that was developed for the classification of Medium Voltage (MV) electricity customers. Starting from a sample of data bases, resulting from a monitoring campaign, Data Mining (DM) techniques are used in order to discover a set of a MV consumer typical load profile and, therefore, to extract knowledge regarding to the electric energy consumption patterns. In first stage, it was applied several hierarchical clustering algorithms and compared the clustering performance among them using adequacy measures. In second stage, a classification model was developed in order to allow classifying new consumers in one of the obtained clusters that had resulted from the previously process. Finally, the interpretation of the discovered knowledge are presented and discussed.
Resumo:
The growing importance and influence of new resources connected to the power systems has caused many changes in their operation. Environmental policies and several well know advantages have been made renewable based energy resources largely disseminated. These resources, including Distributed Generation (DG), are being connected to lower voltage levels where Demand Response (DR) must be considered too. These changes increase the complexity of the system operation due to both new operational constraints and amounts of data to be processed. Virtual Power Players (VPP) are entities able to manage these resources. Addressing these issues, this paper proposes a methodology to support VPP actions when these act as a Curtailment Service Provider (CSP) that provides DR capacity to a DR program declared by the Independent System Operator (ISO) or by the VPP itself. The amount of DR capacity that the CSP can assure is determined using data mining techniques applied to a database which is obtained for a large set of operation scenarios. The paper includes a case study based on 27,000 scenarios considering a diversity of distributed resources in a 33 bus distribution network.
Resumo:
A crucial method for investigating patients with coronary artery disease (CAD) is the calculation of the left ventricular ejection fraction (LVEF). It is, consequently, imperative to precisely estimate the value of LVEF--a process that can be done with myocardial perfusion scintigraphy. Therefore, the present study aimed to establish and compare the estimation performance of the quantitative parameters of the reconstruction methods filtered backprojection (FBP) and ordered-subset expectation maximization (OSEM). Methods: A beating-heart phantom with known values of end-diastolic volume, end-systolic volume, and LVEF was used. Quantitative gated SPECT/quantitative perfusion SPECT software was used to obtain these quantitative parameters in a semiautomatic mode. The Butterworth filter was used in FBP, with the cutoff frequencies between 0.2 and 0.8 cycles per pixel combined with the orders of 5, 10, 15, and 20. Sixty-three reconstructions were performed using 2, 4, 6, 8, 10, 12, and 16 OSEM subsets, combined with several iterations: 2, 4, 6, 8, 10, 12, 16, 32, and 64. Results: With FBP, the values of end-diastolic, end-systolic, and the stroke volumes rise as the cutoff frequency increases, whereas the value of LVEF diminishes. This same pattern is verified with the OSEM reconstruction. However, with OSEM there is a more precise estimation of the quantitative parameters, especially with the combinations 2 iterations × 10 subsets and 2 iterations × 12 subsets. Conclusion: The OSEM reconstruction presents better estimations of the quantitative parameters than does FBP. This study recommends the use of 2 iterations with 10 or 12 subsets for OSEM and a cutoff frequency of 0.5 cycles per pixel with the orders 5, 10, or 15 for FBP as the best estimations for the left ventricular volumes and ejection fraction quantification in myocardial perfusion scintigraphy.
Resumo:
OBJECTIVE: To examine the effects of the length and timing of nighttime naps on performance and physiological functions, an experimental study was carried out under simulated night shift schedules. METHODS: Six students were recruited for this study that was composed of 5 experiments. Each experiment involved 3 consecutive days with one night shift (22:00-8:00) followed by daytime sleep and night sleep. The experiments had 5 conditions in which the length and timing of naps were manipulated: 0:00-1:00 (E60), 0:00-2:00 (E120), 4:00-5:00 (L60), 4:00-6:00 (L120), and no nap (No-nap). During the night shifts, participants underwent performance tests. A questionnaire on subjective fatigue and a critical flicker fusion frequency test were administered after the performance tests. Heart rate variability and rectal temperature were recorded continuously during the experiments. Polysomnography was also recorded during the nap. RESULTS: Sleep latency was shorter and sleep efficiency was higher in the nap in L60 and L120 than that in E60 and E120. Slow wave sleep in the naps in E120 and L120 was longer than that in E60 and L60. The mean reaction time in L60 became longer after the nap, and faster in E60 and E120. Earlier naps serve to counteract the decrement in performance and physiological functions during night shifts. Performance was somewhat improved by taking a 2-hour nap later in the shift, but deteriorated after a one-hour nap. CONCLUSIONS: Naps in the latter half of the night shift were superior to earlier naps in terms of sleep quality. However performance declined after a 1-hour nap taken later in the night shift due to sleep inertia. This study suggests that appropriate timing of a short nap must be carefully considered, such as a 60-min nap during the night shift.
Resumo:
Renal scintigraphy with 99mTc-dimercaptosuccinic acid (99mTc-DMSA) is performed with the aim of detect cortical abnormalities related to urinary tract infection and accurately quantify relative renal function (RRF). For this quantitative assessment Nuclear Medicine Technologist should draw regions of interest (ROI) around each kidney (KROI) and peri-renal background (BKG) ROI although controversy still exists about BKG-ROI. The aim of this work was to evaluate the effect of the normalization procedure, number and location of BKG-ROI on the RRF in 99mTc-DMSA scintigraphy.
Resumo:
The main goal of this work is to solve mathematical program with complementarity constraints (MPCC) using nonlinear programming techniques (NLP). An hyperbolic penalty function is used to solve MPCC problems by including the complementarity constraints in the penalty term. This penalty function [1] is twice continuously differentiable and combines features of both exterior and interior penalty methods. A set of AMPL problems from MacMPEC [2] are tested and a comparative study is performed.
Resumo:
Mathematical Program with Complementarity Constraints (MPCC) finds many applications in fields such as engineering design, economic equilibrium and mathematical programming theory itself. A queueing system model resulting from a single signalized intersection regulated by pre-timed control in traffic network is considered. The model is formulated as an MPCC problem. A MATLAB implementation based on an hyperbolic penalty function is used to solve this practical problem, computing the total average waiting time of the vehicles in all queues and the green split allocation. The problem was codified in AMPL.
Resumo:
OBJECTIVE: To assess personal autonomy of long-stay psychiatric inpatients, to identify those patients who could be discharged and to evaluate the impact of sociodemographic variables, social functioning, and physical disabilities on their autonomy was also assessed. METHODS: A total of 584 long-stay individuals of a psychiatric hospital (96% of the hospital population) in Southern Brazil was assessed between July and August 2002. The following instruments, adapted to the Brazilian reality, were used: independent living skills survey, social behavioral schedule, and questionnaire for assessing physical disability. RESULTS: Patients showed severe impairment of their personal autonomy, especially concerning money management, work-related skills and leisure, food preparation, and use of transportation. Autonomy deterioration was associated with length of stay (OR=1.02), greater physical disability (OR=1.54; p=0.01), and male gender (OR=3.11; p<0.001). The risk estimate of autonomy deterioration was 23 times greater among those individuals with severe impairment of social functioning (95% CI: 10.67-49.24). CONCLUSIONS: In-patients studied showed serious impairment of autonomy. While planning these patients' discharge their deficits should be taken into consideration. Assessment of patients' ability to function and to be autonomous helps in identifying their needs for care and to evaluate their actual possibilities of social reinsertion.
Resumo:
This paper presents a proposal for an automatic vehicle detection and classification (AVDC) system. The proposed AVDC should classify vehicles accordingly to the Portuguese legislation (vehicle height over the first axel and number of axels), and should also support profile based classification. The AVDC should also fulfill the needs of the Portuguese motorway operator, Brisa. For the classification based on the profile we propose:he use of Eigenprofiles, a technique based on Principal Components Analysis. The system should also support multi-lane free flow for future integration in this kind of environments.
Resumo:
Chronic liver disease (CLD) is most of the time an asymptomatic, progressive, and ultimately potentially fatal disease. In this study, an automatic hierarchical procedure to stage CLD using ultrasound images, laboratory tests, and clinical records are described. The first stage of the proposed method, called clinical based classifier (CBC), discriminates healthy from pathologic conditions. When nonhealthy conditions are detected, the method refines the results in three exclusive pathologies in a hierarchical basis: 1) chronic hepatitis; 2) compensated cirrhosis; and 3) decompensated cirrhosis. The features used as well as the classifiers (Bayes, Parzen, support vector machine, and k-nearest neighbor) are optimally selected for each stage. A large multimodal feature database was specifically built for this study containing 30 chronic hepatitis cases, 34 compensated cirrhosis cases, and 36 decompensated cirrhosis cases, all validated after histopathologic analysis by liver biopsy. The CBC classification scheme outperformed the nonhierachical one against all scheme, achieving an overall accuracy of 98.67% for the normal detector, 87.45% for the chronic hepatitis detector, and 95.71% for the cirrhosis detector.
Resumo:
PURPOSE: Fatty liver disease (FLD) is an increasing prevalent disease that can be reversed if detected early. Ultrasound is the safest and ubiquitous method for identifying FLD. Since expert sonographers are required to accurately interpret the liver ultrasound images, lack of the same will result in interobserver variability. For more objective interpretation, high accuracy, and quick second opinions, computer aided diagnostic (CAD) techniques may be exploited. The purpose of this work is to develop one such CAD technique for accurate classification of normal livers and abnormal livers affected by FLD. METHODS: In this paper, the authors present a CAD technique (called Symtosis) that uses a novel combination of significant features based on the texture, wavelet transform, and higher order spectra of the liver ultrasound images in various supervised learning-based classifiers in order to determine parameters that classify normal and FLD-affected abnormal livers. RESULTS: On evaluating the proposed technique on a database of 58 abnormal and 42 normal liver ultrasound images, the authors were able to achieve a high classification accuracy of 93.3% using the decision tree classifier. CONCLUSIONS: This high accuracy added to the completely automated classification procedure makes the authors' proposed technique highly suitable for clinical deployment and usage.