960 resultados para Blast furnace slag
Resumo:
A simple hand-operated shock tube capable of producing Mach 2 shock waves is described. Performance of this miniature shock tube using compressed high pressure air created by a manually operated piston in the driver section of the shock tube as driver gas with air at 1 atm pressure as the test gas in the driven tube is presented. The performance of the shock tube is found to match well with the theoretically estimated values using normal shock relations. Applications of this shock tube named Reddy tube, include study of blast-induced traumatic brain injuries and high temperature chemical kinetics.
Resumo:
In this paper, we focus on increasing the throughput and diversity of network coded MIMO transmissions in bidirectional multi-pair wireless relay networks. All nodes have multi-antenna capability. Pairs of nodes want to exchange messages via a relay having multi-antenna and encoding/decoding capability. Nodes transmit their messages to the relay in the first (MAC) phase. The relay decodes all the messages and XORs them and broadcasts the XORed message in the second (BC) phase. We develop a generalized framework for bidirectional multi-pair multi-antenna wireless network coding, which models different MIMO transmission schemes including spatial multiplexing (V-BLAST), orthogonal STBC (OSTBC), and non-orthogonal STBC (NO-STBC) in a unified way. Enhanced throughputs are achieved by allowing all nodes to simultaneously transmit at their full rate. High diversity orders are achieved through the use of NO-STBCs, characterized by full rate and full transmit diversity. We evaluate and compare the performance of VBLAST, OSTBC, and NO-STBC schemes in one-dimensional 1-pair linear network (one pair of nodes and a relay) and two-dimensional 2-pair `cross' network (two pairs of nodes and a relay).
Resumo:
The high-temperature oxidation behavior of modified 304 austenitic stainless steels in a water vapor atmosphere was investigated. Samples were prepared by various thermo mechanical treatments to result in different grain sizes in the range 8-30 mu m. Similar I 3 pound grain boundary fraction was achieved to eliminate any grain-boundary characteristics effect. Samples were oxidized in an air furnace at 700 A degrees C with 20 % water vapor atmosphere. On the fine-grained sample, a uniform Cr2O3 layer was formed, which increased the overall oxidation resistance. Whereas on the coarse-grained sample, an additional Fe2O3 layer formed on the Cr-rich oxide layer, which resulted in a relatively high oxidation rate. In the fine-grained sample, grain boundaries act as rapid diffusion paths for Cr and provided enough Cr to form Cr2O3 oxide on the entire sample surface.
Resumo:
Generalized spatial modulation (GSM) is a relatively new modulation scheme for multi-antenna wireless communications. It is quite attractive because of its ability to work with less number of transmit RF chains compared to traditional spatial multiplexing (V-BLAST system). In this paper, we show that, by using an optimum combination of number of transmit antennas (N-t) and number of transmit RF chains (N-rf), GSM can achieve better throughput and/or bit error rate (BER) than spatial multiplexing. First, we quantify the percentage savings in the number of transmit RF chains as well as the percentage increase in the rate achieved in GSM compared to spatial multiplexing; 18.75% savings in number of RF chains and 9.375% increase in rate are possible with 16 transmit antennas and 4-QAM modulation. A bottleneck, however, is the complexity of maximum-likelihood (ML) detection of GSM signals, particularly in large MIMO systems where the number of antennas is large. We address this detection complexity issue next. Specifically, we propose a Gibbs sampling based algorithm suited to detect GSM signals. The proposed algorithm yields impressive BER performance and complexity results. For the same spectral efficiency and number of transmit RF chains, GSM with the proposed detection algorithm achieves better performance than spatial multiplexing with ML detection.
Resumo:
In this paper, we consider signal detection in nt × nr underdetermined MIMO (UD-MIMO) systems, where i) nt >; nr with a overload factor α = nt over nr >; 1, ii) nt symbols are transmitted per channel use through spatial multiplexing, and iii) nt, nr are large (in the range of tens). A low-complexity detection algorithm based on reactive tabu search is considered. A variable threshold based stopping criterion is proposed which offers near-optimal performance in large UD-MIMO systems at low complexities. A lower bound on the maximum likelihood (ML) bit error performance of large UD-MIMO systems is also obtained for comparison. The proposed algorithm is shown to achieve BER performance close to the ML lower bound within 0.6 dB at an uncoded BER of 10-2 in 16 × 8 V-BLAST UD-MIMO system with 4-QAM (32 bps/Hz). Similar near-ML performance results are shown for 32 × 16, 32 × 24 V-BLAST UD-MIMO with 4-QAM/16-QAM as well. A performance and complexity comparison between the proposed algorithm and the λ-generalized sphere decoder (λ-GSD) algorithm for UD-MIMO shows that the proposed algorithm achieves almost the same performance of λ-GSD but at a significantly lesser complexity.
Resumo:
The present paper details the prediction of blast induced ground vibration, using artificial neural network. The data was generated from five different coal mines. Twenty one different parameters involving rock mass parameters, explosive parameters and blast design parameters, were used to develop the one comprehensive ANN model for five different coal bearing formations. A total of 131 datasets was used to develop the ANN model and 44 datasets was used to test the model. The developed ANN model was compared with the USBM model. The prediction capability to predict blast induced ground vibration, of the comprehensive ANN model was found to be superior.
Resumo:
Lattice reduction (LR) aided detection algorithms are known to achieve the same diversity order as that of maximum-likelihood (ML) detection at low complexity. However, they suffer SNR loss compared to ML performance. The SNR loss is mainly due to imperfect orthogonalization and imperfect nearest neighbor quantization. In this paper, we propose an improved LR-aided (ILR) detection algorithm, where we specifically target to reduce the effects of both imperfect orthogonalization and imperfect nearest neighbor quantization. The proposed ILR detection algorithm is shown to achieve near-ML performance in large-MIMO systems and outperform other LR-aided detection algorithms in the literature. Specifically, the SNR loss incurred by the proposed ILR algorithm compared to ML performance is just 0.1 dB for 4-QAM and < 0.5 dB for 16-QAM in 16 x 16 V-BLAST MIMO system. This performance is superior compared to those of other LR-aided detection algorithms, whose SNR losses are in the 2 dB to 9 dB range.
Resumo:
To understand Cr emissions from slag melts to a vapor phase, an assessment of the stabilities of the chromium oxides at high temperatures has been carried out. The objective of the present study is to present a set of consistent data corresponding to the thermodynamic properties of the oxides of chromium, with special reference to the emission of hexavalent chromium from slags. In the current work, critical analysis of the experimental data available and a third analysis in the case of Cr2O3 have been carried out. Commercial databases, Fact Sage and ThermoCalc along with NIST-JANAF Thermochemical Tables, have been used for the analysis and comparisons of the results that are presented. The significant discrepancies in the available data have been pointed out. The data from NIST-JANAF Thermochemical Tables have been found to provide a set of consistent data for the various chromium oxides. An Ellingham diagram and the equations for the Delta G degrees (standard Gibbs free energy change) of formation of CrOx have been proposed. The present analysis shows that CrO3(g) is likely to be emitted from slag melts at high oxygen partial pressures. (C) The Minerals, Metals & Materials Society and ASM International 2014
Resumo:
Single crystals of LaMn0.5Co0.5O3 belonging to the ferromagnetic-insulator and distorted perovskite class were grown using a four-mirror optical float zone furnace. The as-grown crystal crystallizes into an orthorhombic Pbnm structure. The spatially resolved 2D Raman scan reveals a strain-induced distribution of transition metal (TM)-oxygen (O) octahedral deformation in the as-grown crystal. A rigorous annealing process releases the strain, thereby generating homogeneous octahedral distortion. The octahedra tilt by reducing the bond angle TM-O-TM, resulting in a decline of the exchange energy in the annealed crystal. The critical behavior is investigated from the bulk magnetization. It is found that the ground state magnetic behavior assigned to the strain-free LaMn0.5Co0.5O3 crystal is of the 3D Heisenberg kind. Strain induces mean field-like interaction in some sites, and consequently, the critical exponents deviate from the 3D Heisenberg class in the as-grown crystal. The temperature-dependent Raman scattering study reveals strong spin-phonon coupling and the existence of two magnetic ground states in the same crystal. (C) 2014 AIP Publishing LLC.
Resumo:
An equiatomic NiTiCuFe multi-component alloy with simple body-centered cubic (bcc) and face-centered cubic solid-solution phases in the microstructure was processed by vacuum induction melting furnace under dynamic Ar atmosphere. High-temperature uniaxial compression experiments were conducted on it in the temperature range of 1073 K to 1303 K (800 degrees C to 1030 degrees C) and strain rate range of 10(-3) to 10(-1) s(-1). The data generated were analyzed with the aid of the dynamic materials model through which power dissipation efficiency and instability maps were generated so as to identify the governing deformation mechanisms that are operative in different temperature-strain rate regimes with the aid of complementary microstructural analysis of the deformed specimens. Results indicate that the stable domain for the high temperature deformation of the multi-component alloy occurs in the temperature range of 1173 K to 1303 K (900 degrees C to 1030 degrees C) and (epsilon) over dot range of 10(-3) to 10(-1.2) s(-1), and the deformation is unstable at T = 1073 K to 1153 K (800 degrees C to 880 degrees C) and (epsilon) over dot = 10(-3) to 10(-1.4) s(-1) as well as T = 1223 K to 1293 K (950 degrees C to 1020 degrees C) and (epsilon) over dot = 10(-1.4) to 10(-1) s(-1), with adiabatic shear banding, localized plastic flow, or cracking being the unstable mechanisms. A constitutive equation that describes the flow stress of NiTiCuFe multi-component alloy as a function of strain rate and deformation temperature was also determined. (C) The Minerals, Metals & Materials Society and ASM International 2015
Resumo:
The Dy3+ doped Y3-xDyxFe5O12 (x=0-3) nanopowders were prepared using microwave hydrothermal route. The structural and morphological studies were analyzed using transmission electron microscope, X-ray diffractometer and field emission scanning electron microscope. The nanopowders were sintered at 900 degrees C/90 min using microwave furnace. Dense ceramics with theoretical density of around 95% was obtained. Ferro magnetic resonance (FMR) spectrum and microwave absorption spectrum of Dy3+ doped YIG were studied, the signal exhibits a resonance character for all Dy3+ variations. It was observed that the location of the FMR signal peak at the field axes monotonically shifts to higher field with increasing Dy3+ content. The dielectric and magnetic properties (epsilon', epsilon `', mu' and mu `') of Dy3+ doped YIG were studied over a wide range of frequency (1-50 GHz). With increase of Dy3+ both epsilon' and mu' decreased. The low values of dielectric, magnetic properties and broad distribution of FMR line width of these ceramics are opening the real opportunity to use them for microwave devices above K- band frequency. (C) 2015 Elsevier Ltd. All rights reserved.
Resumo:
Biodiesel run engines are gaining popularity since the last few years as a viable alternative to conventional petro-diesel based engines. In biodiesel exhaust the content of volatile organic compounds, oil mist, and mass of particulate matter is considerably lower. However, the concentration of oxides of nitrogen (NOx) is relatively higher. In this paper the biodiesel exhaust from a stationary engine is treated under controlled laboratory conditions for removal of NOx using dielectric barrier discharge plasma in cascade with adsorbents prepared from abundantly available industrial waste byproducts like red mud and copper slag. Results were compared with gamma-alumina, a commercial adsorbent. Two different dielectric barrier discharge (DBD) reactors were tested for their effectiveness under Repetitive pulses /AC energization. NOx removal as high as 80% was achieved with pulse energized reactors when cascaded with red mud as adsorbent.
Resumo:
Thin films of CuIn1-xAlxSe2 (CIAS) were grown on the flexible 10 micrometer thin stainless steel substrates, by dc co-sputtering from the elemental cathodes, followed by annealing with modified selenization. CuInAl alloyed precursor films were selenized both by noble gas assisted Se vapor transport in a tubular furnace and vacuum evaporation of Se in an evaporation chamber. CIAS thin films were optimized for better adhesion. X-ray diffraction, scanning electron microscopy, and UV-visible absorption spectroscopy were used to characterize the selenized films. The composition of CIAS films was varied by substituting In with Al in CuInSe2 (CIS) from 0 <= x <= 0.65 (x = Al/Al+In). Lattice parameters, average crystallite sizes, and compact density of the films, decreased when compared to CIS and (112) peak shifted to higher Bragg's angle, upon Al incorporation. The dislocation density and strain were found to increase with Al doping. Solar cells with SS/Mo/CIAS/CdS/iZnO: AZnO/Al configuration were fabricated and were tested for current-voltage characteristics for various `x' values, under Air Mass 1.5 Global one sun illumination. The best CIAS solar cell showed the efficiency of 6.8%, with x = 0.13, Eg = 1.17 eV, fill factor 45.04, and short circuit current density J(sc) 30 mA/cm(2).
Resumo:
Thin films of CuIn1-xAlxSe2 (CIAS) were grown on the flexible 10 micrometer thin stainless steel substrates, by dc co-sputtering from the elemental cathodes, followed by annealing with modified selenization. CuInAl alloyed precursor films were selenized both by noble gas assisted Se vapor transport in a tubular furnace and vacuum evaporation of Se in an evaporation chamber. CIAS thin films were optimized for better adhesion. X-ray diffraction, scanning electron microscopy, and UV-visible absorption spectroscopy were used to characterize the selenized films. The composition of CIAS films was varied by substituting In with Al in CuInSe2 (CIS) from 0 <= x <= 0.65 (x = Al/Al+In). Lattice parameters, average crystallite sizes, and compact density of the films, decreased when compared to CIS and (112) peak shifted to higher Bragg's angle, upon Al incorporation. The dislocation density and strain were found to increase with Al doping. Solar cells with SS/Mo/CIAS/CdS/iZnO: AZnO/Al configuration were fabricated and were tested for current-voltage characteristics for various `x' values, under Air Mass 1.5 Global one sun illumination. The best CIAS solar cell showed the efficiency of 6.8%, with x = 0.13, Eg = 1.17 eV, fill factor 45.04, and short circuit current density J(sc) 30 mA/cm(2).
Resumo:
Silicon carbide bulk crystals were grown in an induction-heating furnace using the physical vapor transport method. Crystal growth modeling was performed to obtain the required inert gas pressure and temperatures for sufficiently large growth rates. The SiC crystals were expanded by designing a growth chamber having a positive temperature gradient along the growth interface. The obtained 6H-SiC crystals were cut into wafers and characterized by Raman scattering spectroscopy and X-ray diffraction, and the results showed that most parts of the crystals had good crystallographic structures.